• Title/Summary/Keyword: Rainfall pattern

Search Result 355, Processing Time 0.027 seconds

An Analysis of the Temporal Pattern according to Hydrologic Characteristics of Rainfall in Urban Area (도시지역에서 강우의 수문학적 특성에 따른 시간분포 분석)

  • Lee, Jung-Sik;Shin, Chang-Dong;Kim, Young-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1830-1834
    • /
    • 2006
  • 본 연구에서는 강우의 수문학적 특성을 고려하여 도시지역에서의 시간분포를 분석하고, Huff의 무차원 누가곡선 및 Yen과 Chow의 무차원 특성변수를 제시하였으며, 강우의 수문학적 특성은 지속기간, 강우의 발생원인(장마, 태풍, 집중호우, 전선형 강우), 강우강도 등으로 분류하였다. 본 연구의 수행으로 인해 얻어진 결과를 요약하면 다음과 같다. 첫째, 국내 도시지역의 단시간 강우의 최대강우강도는 전방위구간에서 발생할 확률이 가장 높게 나타났으며, 둘째, 강우발생원인별 분류에서도 전반적으로 전방위구간에서, 태풍의 경우에는 후방위구간에서 최대강우강도가 발생하였다. 셋째, 평균강우강도이하의 경호우와 평균강우강도이상의 중 호우에서는 전방위구간에서 최대강우강도가 발생하였다. 넷째, 전기간 강우자료를 이용한 기존 연구들의 무차원 누가곡선 및 특성변수와의 비교를 실시하여, 수문학적 특성에 따라 무차원 누가곡선의 위치 및 특성변수의 값에서 차이가 발생한다는 것을 알 수 있었다.

  • PDF

A Study of Progressive Parameter Calibrations for Rainfall-Runoff Models (강우-유출모형을 위한 매개변수 순차 보정기법 연구)

  • Kwak, Jae-Won;Kim, Hung-Soo;Hong, Il-Pyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1499-1503
    • /
    • 2009
  • 본 연구에서는 저류함수모형과 Tank 모형, SSARR 모형을 이용하여 금강유역의 미호천 유역, 일본의 Kusaki 댐 유역, 베트남의 Ta Trach 유역에 대하여 홍수모의예측을 수행하고 그 효율성을 분석하였다. 연구에 적용된 강우-유출 모형에 대하여 Pattern Search, Genetic Algorithm 의 최적화 방법과 WSSR과 SSR의 목적함수를 이용한 매개변수 산정을 수행하였다. 최적화 방법을 적용할 때 매개변수 보정의 효율성 증대를 위하여, 보정과정 내에서 매개변수 간 상관성을 분석하고 이를 바탕으로 매개변수를 소군집으로 분류하여 민감도에 따른 순차 보정 방법을 적용하고 이 결과를 비교 분석하였다. 매개변수 소군집을 이용한 보정 방법과 기존에 사용되는 전체 매개변수를 이용한 보정 방법을 적용한 결과, SSR 에 적용하였을 때 첨두 유량과 보정 시간 면에서 유리한 것으로 나타났고, 저류함수 모형과 TANK 모형에 대해서 좀 더 좋은 결과를 나타내는 것으로 나타났다.

  • PDF

A Method of Simulating Ephemeral Stream Runoff Characteristics in Cheonmi-cheon Watershed, Jeju Island (제주 천미천 유역의 간헐하천 유출특성 모의 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Na, Hanna
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.523-531
    • /
    • 2013
  • In this study, a method of simulating ephemeral stream runoff characteristics in Jeju watershed is newly suggested. The process based conceptual-physical scheme is established based on the SWAT-K and applied to Cheonmi-cheon watershed which shows the typical pattern of ephemeral stream runoff characteristics. For the proper simulation of this runoff, the intermediate flow and baseflow are controlled to make downward percolation should be dominant. The result showed that surface runoff simulated by using the modified scheme showed good agreement with observed runoff data. In addition, it was found that the estimated runoff directly affected the groundwater recharge rate. This conceptual model should be continuously progressed including rainfall interception, spatially estimated evapotranspiration and so forth for the reasonable simulation of the hydrologic characteristics in Jeju island.

Dominant Modes of the East Asian Summer Monsoon Using Equivalent Potential Temperature (상당온위를 사용한 동아시아 여름철 몬순의 6월 및 7월 주 변동 모드 분석)

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.483-488
    • /
    • 2012
  • The monsoon front lies on East Asian region, but it gradually propagates to the north during the boreal summer. The equivalent potential temperature (EPT) reveals the thermodynamical features of air masses and monsoon front. Therefore, this study considered the thermodynamical EPT and dynamical wind fields to clarify the peculiarity of East Asian summer monsoon (EASM) variations in June and July, respectively. Western North Pacific subtropical high (WNPSH) and Okhotsk sea high (OSH) both play the crucial role to interannual variations of EASM frontal activity and amount of rainfall. The OSH is important in June, but the WNPSH is key factor in July. Furthermore, the OSH (June) is affected by North Atlantic tripolar sea surface temperature (SST) pattern and WNPSH (July) is influenced by North Indian Ocean SST warming.

Analysis of Rainfall Pattern Change According to Urbanization (도시화에 따른 강우특성 변화 분석)

  • Oh, Tae-Suk;Moon, Young-Il;Son, Chan-Young;Chun, Si-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1327-1331
    • /
    • 2010
  • 최근 50년간 한반도는 산업화와 근대화로 인하여 급격한 도시화가 진행되었다. 도시화는 자연적으로 조성된 생태환경을 변화시키고, 열섬현상과 고층빌딩 등으로 인해 대기의 이동과 특성의 변화를 야기시키게 된다. 따라서 본 연구에서는 우리나라의 과거부터 인구자료와 시가화면적비 자료를 이용하여 도시화가 많이 진행된 지역과 비도시화 지역으로 구분하여 발생된 강우특성자료에 대한 비교분석을 수행하였다. 따라서 우리나라의 관측자료가 존재하는 57개 지점을 대상으로 위도, 경도, 연강우량, 연최대일강우량, 강우일수, 10mm 이상의 강우일수 및 80mm 이상의 강우일수를 이용하여 군집분석을 수행하였다. 군집분석을 통해 우리나라를 크게 4개 권역으로 구분하고, 강우자료의 관측기간을 이등분하여 전후를 비교하였다. 분석 결과에서 도시화가 진행된 지역이 비도시화 지역에 비하여 강우사상의 변화가 연강우량과 강우일수, 80mm 이상 강우일수에서 나타나고 있는 것으로 나타났다. 따라서 도시화가 강우특성 변화에 끼치는 영향에 대한 지속적인 연구가 필요한 것으로 판단된다.

  • PDF

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Assessment of Soil Loss at Military Shooting Range by RUSLE Model: Correlation Between Soil Loss and Migration of Explosive Compounds (RUSLE 모델에 의한 군사격장 피탄지 토양유실량 평가: 토양 유실과 오염 화약물질 이동 상관성)

  • Gong, Hyo-Young;Lee, Kwang-Pyo;Lee, Jong-Yeol;Kim, Bumjoon;Lee, Ahreum;Bae, Bumhan;Kim, Ji-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.119-128
    • /
    • 2012
  • The applicability and accuracy of Revised Universal Soil Loss Equation (RUSLE) model on the estimation of soil loss at impacted area of shooting range was tested to further the understanding of soil erosion at shooting ranges by using RUSLE. At a shooting range located in northern Kyunggi, the amount of soil loss was estimated by RUSLE model and compared with that estimated by Global Positioning System-Total Station survey. As results, the annual soil loss at a study site (202 m long by 79 m wide) was estimated to be 2,915 ton/ha/year by RUSLE and 3,058 ton/ha/year by GPS-TS survey, respectively. The error between two different estimations was less than 5%, however, information on site conditions should be collected more to adjust model coefficients accurately. At the study shooting range, sediments generated by rainfall was transported from the top to near the bottom of the sloping face through sheet erosion as well as rill erosion, forming a gully along the direction of the storm water flow. Coarser fractions of the sediments were redeposited in the limited area along the channel. Distribution characteristics of explosive compounds in soil before and after summer monsoon rainfall in the study area were compared with the erosion patterns. Soil sampling and analyses results showed that the dispersion of explosive compounds in surface soil was consistent with the characteristics of soil erosion and redeposition pattern of sediment movements after rainfalls.

Estimation of Storage Capacity for Sustainable Rainwater Harvesting System with Probability Distribution (확률분포를 이용한 지속가능한 빗물이용시설의 저류용량 산정)

  • Kang, Won Gu;Chung, Eun-Sung;Lee, Kil Seong;Oh, Jin-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.740-746
    • /
    • 2010
  • Rainwater has been used in many countries as a way of minimizing water availability problems. Rainwater harvesting system (RHS) has been successfully implemented as alternative water supply sources even in Korea. Although RHS is an effective alternative to water supply, its efficiency is often heavily influenced by temporal distribution of rainfall. Since natural precipitation is a random process and has probabilistic characteristics, it will be more appropriate to describe these probabilistic features of rainfall and its relationship with design storage capacity as well as supply deficit of RHS. This study presents the methodology to establish the relationships between storage capacities and deficit rates using probability distributions. In this study, the real three-story building was considered and nine scenaries were developed because the daily water usage pattern of the study one was not identified. GEV, Gumbel and the generalized logistic distribution ware selected according to the results of Kolmogorov-Smirnov test and Chi-Squared test. As a result, a set of curves describing the relationships under different exceedance probabilities were generated as references to RHS storage design. In case of the study building, the deficit rate becomes larger as return period increases and will not increase any more if the storage capacity becomes the appropriate quantity. The uncertainties between design storage and the deficit can be more understood through this study on the probabilistic relationships between storage capacities and deficit rates.

Intercomparison of the East-Asian Summer Monsoon on 11-18 July 2004, simulated by WRF, MM5, and RSM models (WRF, MM5, RSM 모형에서 모의한 2004년 7월 11-18일의 동아시아 몬순의 비교)

  • Ham, Su-Ryun;Park, Seon-Joo;Bang, Cheol-Han;Jung, Byoung-Joo;Hong, Song-You
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • This study compares the summer monsoon circulations during a heavy rainfall period over the Korean peninsular from 11 to 18 July 2004, simulated by three widely used regional models; WRF, MM5, and RSM. An identical model setup is carried out for all the experiments, except for the physical option differences in the RSM. The three models with a nominal resolution of about 50 km over Korea are nested by NCEP-DOE reanalysis data. Another RSM experiment with the same cumulus parameterization scheme as in the WRF and MM5 is designed to investigate the importance of the representation of subgrid-scale parameterized convection in reproducing monsoonal circulations in East Asia. All thee models are found to be capable of reproducing the general distribution of monsoonal precipitation, extending northeastward from south China across the Korean peninsula, to northern Japan. The results from the WRF and MM5 are similar in terms of accumulated precipitation, but a slightly better performance in the WRF than in the MM5. The RSM improves the bias for precipitation as compared to those from the WRF and MM5, but the pattern correlation is degraded due to overestimation of precipitation in northern China. In the comparison of simulated synoptic scale features, the RSM is found to reproduce the large-scale features well compared to the results from the MM5 and WRF. On the other hand, the simulated precipitation from the RSM with the convection scheme used in the MM5 and WRF is closer to that from the WRF and MM5 simulations, indicating the significant dependency of simulated precipitation in East Asia on the cumulus parameterization scheme.

Analysis of Baseflow Contribution based on Time-scales Using Various Baseflow Separation Methods (다양한 기저유출 분리 방법을 이용한 4대강 수계의 시간대별 (연·계절·월) 기저유출 기여도 분석)

  • Lee, Seung Chan;Kim, Hui Yeon;Kim, Hyo Jeong;Han, Jeong Ho;Kim, Seong Joon;Kim, Jonggun;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • The analysis of baseflow contribution is very significant in Korea because most rivers have high variability of streamflow due to the monsoon climate. Recently, the importance of such analysis is being more evident especially in terms of river management because of the changing pattern of rainfall and runoff resulted from climate change. Various baseflow separation methods have been developed to separate baseflow from streamflow. However, it is very difficult to identify which method is the most accurate way due to the lack of measured baseflow data. Moreover, it is inappropriate to analyze the annual baseflow contribution for Korean rivers because rainfall patterns varies significantly with the seasons. Thus, this study compared the baseflow contributions at various time-scales (annual, seasonal and monthly) for the 4 major river basins through BFI (baseflow index) and suggested baseflow contribution of each basin by the BFI ranges searched from different baseflow separation methods (e.g., BFLOW, HYSEP, PART, WHAT). Based on the comparison of baseflow contributions at the three time scales, this study showed that the baseflow contributions from the monthly and seasonal analysis are more reasonable than that from the annual analysis. Furthermore, this study proposes that defining BFI with its range is more proper than a specific value for a watershed, considering the difference of BFIs between various baseflow separation methods.