• Title/Summary/Keyword: Rainfall model

Search Result 2,100, Processing Time 0.029 seconds

An Analysis of Characteristic Parameters for the Design of Detention Pond in Urbanized Area (도시유역에서 저류지 설계를 위한 특성인자 분석)

  • Lee, Jae-Joon;Kim, Ho-Nyun;Kwak, Chang-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.37-47
    • /
    • 2006
  • Urban development results in increased runoff volume and flowrates and shortening in time of concentration, which may cause frequent flooding downstream. Flow retardation structures to limit adverse downstream effects of urban storm runoff are used. There are various types of flow retardation measures include detention basins, retention basins, and infiltration basins. In basic planning phase, a number of planning models of detention ponds which decide storage volume by putting main variables were used to design detention ponds. The characteristics of hydrological parameters $\alpha,\;\gamma$ which are used in planning models of detention pond were analyzed. In this study, detention ponds data of Disaster Impact Assessment report at 22 sites were analyzed in order to investigate correlation between characteristic of urban drainage basin parameter and characteristics of detention pond parameter due to urbanization effects. The results showed that storage volume was influenced by peak discharge ratio $\alpha$ more than runoff coefficient ratio $\beta$ and peak discharge ratio $\alpha$ was influenced by runoff coefficient ratio $\beta$ less than regional parameter n. Storage ratio was mainly influenced by duration of design rainfall in the case of trapezoidal inflow hydrograph such as Donahue et al. method.

The Analysis of Reduction Efficiency of Soil Erosion and Sediment Yield by a Ginseng Area using GIS Tools

  • Lee, Geun-Sang;Jeon, Dae-Youn
    • Spatial Information Research
    • /
    • v.17 no.4
    • /
    • pp.431-443
    • /
    • 2009
  • Recently, turbidity problem is one of the hot issues in dam and reservoir management works. Main reason to bring about high density turbid water is sediment yield by rainfall intensity energy. Because existing researches didn't consider diverse types of crops, it was difficult to calculate more accurate soil erosion and sediment yield. This study was evaluated the reduction efficiency of soil erosion and sediment yield using ginseng layer extracted from IKONOS satellite image, and the area and the ratio of ginseng area represented $0.290km^2$ and 0.94%. The reduction efficiency of soil erosion considering ginseng area represented low value in 0.9% using GIS-based RUSLE model, because the area of ginseng was small compared to areas of other agricultural lands. To reflect future land use change, this study was calculated the reduction efficiency of soil erosion and sediment yield by considering many scenarios as kinds of crops of paddy, dry field, orchard, and other agricultural areas convert to the ginseng district. As result of analysis of them according to scenarios, scenario (1) in which dry field was converted to ginseng area and scenario (2) in which fully agricultural lands were converted to ginseng area showed high reduction efficiency as 31.3% and 34.8% respectively, compared to existing research which didn't consider ginseng area. Methodology suggested in this study will be very efficient tools to help reservoir management related to high density turbid water.

  • PDF

Correlation Analysis of Forest Fire Occurrences by Change of Standardized Precipitation Index (SPI 변화에 따른 산불발생과의 관계 분석)

  • YOON, Suk-Hee;WON, Myoung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.14-26
    • /
    • 2016
  • This study analyzed the correlation between the standardized precipitation index(SPI) and forest fire occurrences using monthly accumulative rainfall data since 1970 and regional fire occurrence data since 1991. To understand the relationship between the SPI and forest fire occurrences, the correlations among the SPI of nine main observatory weather stations including Seoul, number of fire occurrences, and log of fire occurrences were analyzed. We analyzed the correlation of SPI with fire occurrences in the 1990s and 2000s and found that in the 1990s, the SPI of 3 months showed high correlation in Gyeonggi, Gangwon, and Chungnam, while the SPI of 6 months showed high correlation in Chungbuk, and the SPI of 12 months showed high correlation in Gyeongnam, Gyenongbuk, Jeonnam, and Jeonbuk. In the 2000s, the SPI of 6 months showed high correlation with the fire frequency in Gyeonggi, Chungnam, Chungbuk, Jeonnam, and Jeonbuk, whereas the fire frequency in western Gangwon was highly correlated with the SPI of 3 months and, in eastern Gangwon, Gyeongnam, and Gyenongbuk, with the SPI of 1 month. In the 1990s, distinct differences in the drought condition between the SPI of 3 months and 12 months in the northern and southern regions of Korean Peninsula were found, whereas the differences in both the SPI of 1 month and 6 months were found in the Baekdudaegan region except western Gangwon since the 2000s. Therefore, this study suggests that we can develop a model to predict forest fire occurrences by applying the SPI of 1-month and 6-month data in the future.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

Development and Application of Green Infrastructure Planning Framework for Improving Urban Water Cycle: Focused on Yeonje-Gu and Nam-Gu in Busan, Korea (도시물순환 개선을 위한 그린인프라 계획 프레임워크 개발 및 시범적용 - 부산시 연제구 및 남구를 대상으로 -)

  • Kang, JungEun;Lee, MoungJin;Koo, YouSeong;Cho, YeonHee
    • Journal of Environmental Policy
    • /
    • v.13 no.3
    • /
    • pp.43-73
    • /
    • 2014
  • Cities in Korea have rapidly urbanized and they are not well prepared for natural disasters which have been increased by climate change. In particular, they often struggle with urban flooding. Recently, green infrastructure has been emphasized as a critical strategy for flood mitigation in developed countries due to its capability to infiltrate water into the ground, provide the ability to absorb and store rainfall, and contribute to mitigating floods. However, in Korea, green infrastructure planning only focuses on esthetic functions or accessibility, and does not think how other functions such as flood mitigation, can be effectively realized. Based on this, we address this critical gap by suggesting the new green infrastructure planning framework for improving urban water cycle and maximizing flood mitigation capacity. This framework includes flood vulnerability assessment for identifying flood risk area and deciding suitable locations for green infrastructure. We propose the use of the combination of frequency ratio model and GIS for flood vulnerability assessment. The framework also includes the selection process of green infrastructure practices under local conditions such as geography, flood experience and finance. Finally, we applied this planning framework to the case study area, namely YeonJe-gu an Nam-gu in Busan. We expect this framework will be incorporated into green infrastructure spatial planning to provide effective decision making process regarding location and design of green infrastructure.

  • PDF

Sustainable Water Resources Planning to Prevent Streamflow Depletion in an Urban Watershed: 1. Methodology (도시유역의 건천화 방지를 위한 지속가능한 수자원 계획: 1. 방법론)

  • Lee, Kil-Seong;Cung, Eun-Sung;Kim, Young-Oh;Cho, Tak-Gun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.935-946
    • /
    • 2006
  • This study proposed a new procedure of sustainable water resources planning to prevent the urban streamflow depletion, based on the Heathcote's study in 1998: (1) to understand the watershed component and processes, (2) to identify and quantify problems within the watershed, (3) to set clear and specific goals, (4) to develop a list of management options, (5) to eliminate infeasible options, (6) to test the effectiveness of remaining feasible options, and (7) to develop the final options. PSR(Presure-State-Response) concept was used for the determination of indicators of PSD(Potential Streamflow Depletion; step 2) and effect equation (step 7) and composite programming for the calculation of PSD. The instreamflow requirement was proposed as clear and specific goal (step 3) and was determined by the larger of the PHABSIM's environmental flow and the drought flow. A continuous rainfall-runoff model is necessary to test the effectiveness of alternatives. It should estimate not only the exact runoff but also the effect of landuse change, reservoir, infiltration facility and so on like SWAT(Soil and Water Assessment Tool). The proposed procedure will be applied on the corresponding paper.

Analysis of Groundwater Use in Kap-cheon Basin (갑천 유역의 지하수 이용 특성 분석)

  • Hong, Sung-Hun;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.463-471
    • /
    • 2008
  • The purpose of this study is to analyze the features of groundwater use to utilize as basic information for water-cycle analysis system development and effective groundwater management in the Kap-cheon basin. The cumulative relationship between groundwater use and the number of wells was analyzed to estimate the representative total groundwater use and the number of wells for the Kap-cheon basin. Then, the spatial distribution of groundwater use in the basin were figured out using the detailed information on groundwater use in each well. Finally, the reasonability of groundwater resources management in Kap-cheon basin was evaluated by comparing groundwater recharge and groundwater use in sub-basins and major stream basins. The results of the analysis showed about 25% of the total wells could represent 90% of groundwater use ($37,923,516\;m^3$/year) in the Kap-cheon basin. A detailed analysis on the groundwater uses in the vicinity of down-town areas of Daejeon metropolitan city showed high groundwater uses ($1.4{\sim}11.1$ times) compared to the groundwater recharge previously estimated using the rainfall-runoff model. The ratio of groundwater use and groundwater recharge for the major river basins in Kap-cheon basin ranged from 1.9 to 2.3 indicating that more sustainable groundwater management should be exercised. The results of this study can be used as basic information in evaluating the change of groundwater flow, stream flow and water-cycle for various groundwater uses in the Kap-cheon basin.

Assessment of Precipitation Characteristics and Synoptic Pattern Associated with Typhoon Affecting the South Korea (우리나라 내습태풍 유형에 따른 강우특성 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Park, Kun-Chul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.463-477
    • /
    • 2015
  • The recent unusual climate and extreme weather events have frequently given unexpected disaster and damages, facing difficulties in the management of water resources. In particular, climate change could result in intensified typhoons, and this would be the worst case scenario that can happen. The primary objective of this study is to identify the patterns of typhoon-induced precipitation and the associated synoptic pattern. This study focused on analyzing precipitation patterns over the South Korea using historic records as opposed to a specified season or duration, and further investigates the potential connection with heavy rainfall to synoptic patterns. In this study, we used the best track data provided by the Regional Specialized Meteorological Center of Japan for 40 years from 1973 to 2012. The patterns of the typhoon-induced precipitation were categorized into four groups according to a given typhoon track information, and then the associated synoptic climatology patterns were further investigated. The results demonstrate that the typhoon-induced precipitation patterns could be grouped and potentially simulated according to the identified synoptic patterns. Our future work will focus on developing a short-term forecasting model of typhoon-induced precipitation considering the identified climate patterns as inputs.

A Development of Method for Surface and Subsurface Runoff Analysis in Urban Composite Watershed (I) - Theory and Development of Module - (대도시 복합유역의 지표 및 지표하 유출해석기법 개발 (I)- 이론 및 모듈의 개발 -)

  • Kwak, Chang-Jae;Lee, Jae-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.39-52
    • /
    • 2012
  • Surface-subsurface interactions are an intrinsic component of the hydrologic response within a watershed. In general, these interactions are considered to be one of the most difficult areas of the discipline, particularly for the modeler who intends simulate the dynamic relations between these two major domains of the hydrological cycle. In essence, one major complexity is the spatial and temporal variations in the dynamically interacting system behavior. The proper simulation of these variations requires the need for providing an appropriate coupling mechanism between the surface and subsurface components of the system. In this study, an approach for modelling surface-subsurface flow and transport in a fully intergrated way is presented. The model uses the 2-dimensional diffusion wave equation for sheet surface water flow, and the Boussinesq equation with the Darcy's law and Dupuit-Forchheimer's assumption for variably saturated subsurface water flow. The coupled system of equations governing surface and subsurface flows is discretized using the finite volume method with central differencing in space and the Crank-Nicolson method in time. The interactions between surface and subsurface flows are considered mass balance based on the continuity conditions of pressure head and exchange flux. The major module consists of four sub-module (SUBFA, SFA, IA and NS module) is developed.

Capacity determination for a rainfall harvesting unit using an optimization method (최적화 기법을 이용한 빗물이용시설의 저류 용량 결정)

  • Jin, Youngkyu;Kang, Taeuk;Lee, Sangho;Jeong, Taekmun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.681-690
    • /
    • 2020
  • Generally, the design capacity of the rainwater harvesting unit is determined by trial and error method that is repeatedly calculating various analysis scenarios with capacity, reliability, and rainwater utilization ratio, etc. This method not only takes a lot of time to analyze but also involves a lot of calculations, so analysis errors may occur. In order to solve the problem, this study suggested a way to directly determine the minimum capacity to meet arbitrary target reliabilities using the global optimization method. The method was implemented by simulation model with particle swarm optimization (PSO) algorithms using Python language. The pyswarm that is provided as an open-source of python was used as optimization method, that can explore global optimum, and consider constraints. In this study, the developed program was applied to the design data for the rainwater harvesting constructed in Cheongna district 1 in Incheon to verify the efficiency, stability, and accuracy of the analysis. The method of determining the capacity of the rainwater harvesting presented in this study is considered to be of practical value because it can improve the current level of analytical technology.