• Title/Summary/Keyword: Rainfall estimation

Search Result 927, Processing Time 0.028 seconds

Rainfall Seasonality and Estimation Errors of Area-Average Rainfall (강수의 계절성과 면적평균강수량의 추정오차)

  • Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.575-581
    • /
    • 2002
  • This study evaluates the variation of estimation error of area-average rainfall due to rainfall seasonality. Both the cases considering and not considering the spatial correlation are compared to derive the characteristics of estimation error. Similar cases with different accumulation time without considering the rainfall seasonality are also investigated. This study was applied to the Geum-river basin with total 28 rain gauge measurements haying more than 30 years of daily rainfall measurements. As results of the study we found that: (1) The absolute estimation error of monthly area-average rainfall show strong seasonality like the total rainfall amount. However, the relative estimation error normalized by its mean was estimated to have similar values about 5 to 8% except January and December. (2) The relative estimation error of annual area-average rainfall estimated was found to have the estimation error about 3% of its annual mean. (3) However, the relative estimation error normalized by the standard deviation remains almost the same for both monthly and annual rainfall amounts, which was estimated about 11% of its standard deviation. (4) Finally, the estimation error without considering the spatial correlation was found to become almost twice the estimation error with considering the spatial correlation.

Uncertainty Analysis of Quantitative Radar Rainfall Estimation Using the Maximum Entropy (Maximum Entropy를 이용한 정량적 레이더 강우추정 불확실성 분석)

  • Lee, Jae-Kyoung
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.511-520
    • /
    • 2015
  • Existing studies on radar rainfall uncertainties were performed to reduce the uncertainty for each stage by using bias correction during the quantitative radar rainfall estimation process. However, the studies do not provide quantitative comparison with the uncertainties for all stages. Consequently, this study proposes a suitable approach that can quantify the uncertainties at each stage of the quantitative radar rainfall estimation process. First, the new approach can present initial and final uncertainties, increasing or decreasing the uncertainty, and the uncertainty percentage at each stage. Furthermore, Maximum Entropy (ME) was applied to quantify the uncertainty in the entire process. Second, for the uncertainty quantification of radar rainfall estimation at each stage, this study used two quality control algorithms, two rainfall estimation relations, and two bias correction techniques as post-processing and progressed through all stages of the radar rainfall estimation. For the proposed approach, the final uncertainty (ME = 3.81) from the ME of the bias correction stage was the smallest while the uncertainty of the rainfall estimation stage was higher because of the use of an unsuitable relation. Additionally, the ME of the quality control was at 4.28 (112.34%), while that of the rainfall estimation was at 4.53 (118.90%), and that of the bias correction at 3.81 (100%). However, this study also determined that selecting the appropriate method for each stage would gradually reduce the uncertainty at each stage. Finally, the uncertainty due to natural variability was 93.70% of the final uncertainty. Thus, the results indicate that this new approach can contribute significantly to the field of uncertainty estimation and help with estimating more accurate radar rainfall.

Rainfall Intensity Estimation with Cloud Type using Satellite Data

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.660-663
    • /
    • 2006
  • Rainfall estimation is important to weather forecast, flood control, hydrological plan. The empirical and statistical methods by measured data(surface rain gauge, rainfall radar, Satellite) is commonly used for rainfall estimation. In this study, the rainfall intensity for East Asia region was estimated using the empirical relationship between SSM/I data of DMSP satellite and brightness temperature of GEOS-9(10.7${\mu}m$) with cloud types(ISCCP and MSG classification). And the empirical formula for rainfall estimation was produced by PMM (Probability Matching Method).

  • PDF

Evaluation of Raingauge Network using Area Average Rainfall Estimation and the Estimation Error (면적평균강우량 산정을 통한 강우관측망 평가 및 추정오차)

  • Lee, Ji Ho;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.103-112
    • /
    • 2014
  • Area average rainfall estimation is important to determine the exact amount of the available water resources and the essential input data for rainfall-runoff analysis. Like that, the necessary criterion for accurate area average rainfall estimate is the uniform spatial distribution of raingauge network. In this study, we suggest the spatial distribution evaluation methodology of raingauge network to estimate better area average rainfall and after the suggested method is applied to Han River and Geum River basin. The spatial distribution of rainfall network can be quantified by the nearest neighbor index. In order to evaluate the effects of the spatial distribution of rainfall network by each basin, area average rainfall was estimated by arithmetic mean method, the Thiessen's weighting method and estimation theory for 2013's rainfall event, and evaluated the involved errors by each cases. As a result, it can be found that the estimation error at the best basin of spatial distribution was lower than the worst basin of spatial distribution.

Estimation of Discharge Load due to Combined Sewer Overflows in the Management of Total Maximum Daily Loads (수질오염총량관리 관거월류부하 변화에 따른 배출부하량 산정방법)

  • Park, Jun Dae;Oh, Seung Young;Choi, Ok Youn
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • The quantity of a discharge load can change with changes in rainfall in the area with a combined sewer system (CSS). To evaluate the implementation appropriately in the management of total maximum daily loads (TMDLs), the effects of rainfall changes should be considered in the estimation of the discharge load. The rainfall condition for the estimation of the discharge load in a certain year should be standardized to the same rainfall condition as that of the reference year. However, the calculation process is very complicated with its potential limitations. This study investigated and developed relatively simple methods for estimating the discharge load. Load conversion method (LCM) is designed to convert the discharge load under the current rainfall condition into that of the reference rainfall conditions. Simple rainfall data method (SRDM) is to simplify the estimation process of the discharge load by the simple conversion of rainfall data. These methods were applied to calculate the discharge load and examine the estimation results. From the results of this study the application of these methods may be useful for estimating the discharge load in the TMDL process.

Development of methodology for daily rainfall simulation considering distribution of rainfall events in each duration (강우사상의 지속기간별 분포 특성을 고려한 일강우 모의 기법 개발)

  • Jung, Jaewon;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.141-148
    • /
    • 2019
  • When simulating the daily rainfall amount by existing Markov Chain model, it is general to simulate the rainfall occurrence and to estimate the rainfall amount randomly from the distribution which is similar to the daily rainfall distribution characteristic using Monte Carlo simulation. At this time, there is a limitation that the characteristics of rainfall intensity and distribution by time according to the rainfall duration are not reflected in the results. In this study, 1-day, 2-day, 3-day, 4-day rainfall event are classified, and the rainfall amount is estimated by rainfall duration. In other words, the distributions of the total amount of rainfall event by the duration are set using the Kernel Density Estimation (KDE), the daily rainfall in each day are estimated from the distribution of each duration. Total rainfall amount determined for each event are divided into each daily rainfall considering the type of daily distribution of the rainfall event which has most similar rainfall amount of the observed rainfall using the k-Nearest Neighbor algorithm (KNN). This study is to develop the limitation of the existing rainfall estimation method, and it is expected that this results can use for the future rainfall estimation and as the primary data in water resource design.

RAINFALL ESTIMATION OVER THE TAIWAN ISLAND FROM TRMM/TMI DATA DURING THE TYPHOON SEASON

  • Chen, W-J;Tsai, M-D;Wang, J-L;Liu, G-R;Hu, J-C;Li, C-C
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.930-933
    • /
    • 2006
  • A new algorithm for satellite microwave rainfall retrievals over the land of Taiwan using TMI (TRMM Microwave Imager) data on board TRMM (Tropical Rainfall Measuring Mission) satellite is described in this study. The scattering index method (Grody, 1991) was accepted to develop a rainfall estimation algorithm and the measurements from Automatic Rainfall and Meteorological Telemetry System (ARMTS) were employed to evaluate the satellite rainfall retrievals. Based on the standard products of 2A25 derived from TRMM/PR data, the rainfall areas over Taiwan were divided into convective rainfall area and stratiform rainfall areas with/without bright band. The results of rainfall estimation from the division of rain type are compared with those without the division of rain type. It is shown that the mean rainfall difference for the convective rain type is reduced from -6.2mm/hr to 1.7mm/hr and for the stratiform rain type with bright band is decreased from 10.7 mm/hr to 2.1mm/hr. But it seems not significant improvement for the stratiform rain type without bright band.

  • PDF

Quantitative Precipitation Estimation using High Density Rain Gauge Network in Seoul Area (고밀도 지상강우관측망을 활용한 서울지역 정량적 실황강우장 산정)

  • Yoon, Seong-sim;Lee, Byongju;Choi, Youngjean
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.283-294
    • /
    • 2015
  • For urban flash flood simulation, we need the higher resolution radar rainfall than radar rainfall of KMA, which has 10 min time and 1km spatial resolution, because the area of subbasins is almost below $1km^2$. Moreover, we have to secure the high quantitative accuracy for considering the urban hydrological model that is sensitive to rainfall input. In this study, we developed the quantitative precipitation estimation (QPE), which has 250 m spatial resolution and high accuracy using KMA AWS and SK Planet stations with Mt. Gwangdeok radar data in Seoul area. As the results, the rainfall field using KMA AWS (QPE1) is showed high smoothing effect and the rainfall field using Mt. Gwangdeok radar is lower estimated than other rainfall fields. The rainfall field using KMA AWS and SK Planet (QPE2) and conditional merged rainfall field (QPE4) has high quantitative accuracy. In addition, they have small smoothed area and well displayed the spatial variation of rainfall distribution. In particular, the quantitative accuracy of QPE4 is slightly less than QPE2, but it has been simulated well the non-homogeneity of the spatial distribution of rainfall.

Determination of Suitable Antecedent Precipitation Day for the Application of NRCS Method in the Korean Basin (NRCS 유효우량 산정방법의 국내유역 적용을 위한 적정 선행강우일 결정 방안)

  • Lee, Myoung Woo;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.41-48
    • /
    • 2005
  • Generally the estimation of effective rainfall is important in the rainfall-runoff analysis. So, we must pay attention to selecting more accurate effective rainfall estimation method. Although there are many effective rainfall estimation methods, the NRCS method is widely used for the estimation of effective rainfall in the ungaged basin. However, the NRCS method was developed based on the characteristics of the river basin in USA. So, it may have problems to use the NRSC method in Korea without its verification. In the NRCS method, the antecedent precipitation of 5-day is usually used for the estimation of effective rainfall. The main purpose of this study is to investigate the suitable antecedent precipitation day in Korea river basin through the case study. This study performs the rainfall-runoff simulation for the Tanbu river basin by HEC-HMS model under the condition of varying the antecedent precipitation day from 1-day to 7-day and performs goodness of fit test by Monte Carlo simulation method. The antecedent precipitation of 2-day shows the most preferable result in the analysis. This result indicates that the NRCS method should be applied with caution according to the characteristics of the river basin.

  • PDF

The Verification of Application of Distributed Runoff Model According to Estimation Methods for the Missing Rainfall Data (결측강우보완방법에 따른 분포형 유출모형의 적용성 검증)

  • Choi, Yong-Joon;Kim, Yeon-Su;Lee, Gi-Ha;Kim, Joo-Cheol
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1375-1384
    • /
    • 2010
  • The purpose of this research is to understand the change of runoff characteristics by estimated spatial rainfall. Therefore, this paper largely composed of two parts. First, we compared the simulated result according to estimation method, ID(Inverse Distance Method, ID2(Inverse Square Distance Method), and Kr(General Covariance Kriging Method), after letting miss rainfall data to the observed data. Second, we reviewed the runoff characteristics of the distributed runoff model according to the estimated spatial rainfall. On the basis of Yuseong water level station, we select the target basin as Gabchun watershed. We assumed 1 point or 2 point of the 6 rainfall gauge stations in watershed were missed. We applied the spatial rainfall distributed by Kr to Hy-GIS GRM, distributed runoff model. When 1 point rainfall data is missed, Kr is superior to others in point rainfall estimation and runoff estimation of Hy-GIS GRM. However, in case rainfall data of 2 points is missed, all of three methods did not give suitable result for them. In conclusion, Kr showed better applicability than other estimated methods if rainfall's data less than 2 points is missed.