• Title/Summary/Keyword: Rainfall distribution

Search Result 910, Processing Time 0.026 seconds

Sensitivity Analysis of ILLUDAS Model Parameters Based on Rainfall Conditions (강우조건이 ILLUDAS 모형 매개변수의 민감도에 미치는 영향 분석)

  • Lee, Jong Tae;Kim, Tae Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.748-757
    • /
    • 2004
  • In this study, we analyzed the sensitivity of parameters which affect the result of ILLUDAS model, in the various rainfall conditions. The three basins including Namgaja, Kings creek, Gray haven were selected for this research. The rainfall conditions are considered in terms of the rainfall frequency, the duration and the distribution. In most cases, the impermeability area ratio, the sewer slope, and the sewer roughness coefficient give more significant effects on the results than others. The results show that as increasing the rainfall frequency, the sensitivity of the parameters, sewer slope and roughness coefficient are rised, while the impermeability area ratio is decreasing. And also, for the duration of rainfall, the impermeability area ratio's sensitivity shows similar tendency. In case of the rainfall distribution, the parameters of the sewer roughness and the impermeability area ratio show more sensitive in Huff distribution. Especially, The impermeability area ratio is the most sensitive parameter in Central blocking and Yen & Chow distributions respectively.

Prediction of Return Periods of Sewer Flooding Due to Climate Change in Major Cities (기후변화에 따른 주요 도시의 하수도 침수 재현기간 예측)

  • Park, Kyoohong;Yu, Soonyu;Byambadorj, Elbegjargal
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using generalized extreme value (GEV) distribution and Gumbel distribution models with rainfall data collected in major cities of Korea to reevaluate the return period of sewer flooding in those cities. As a result, the probable rainfall for GEV and Gumbel distribution in non-stationary state both increased with time(t), compared to the stationary probable rainfall. Considering the reliability of ${\xi}_1$, a variable reflecting the increase of storm events due to climate change, the reliability of the rainfall duration for Seoul, Daegu, and Gwangju in the GEV distribution was over 90%, indicating that the probability of rainfall increase was high. As for the Gumbel distribution, Wonju, Daegu, and Gwangju showed the higher reliability while Daejeon showed the lower reliability than the other cities. In addition, application of the maximum annual rainfall change rate (${\xi}_1{\cdot}t$) to the location parameter made possible the prediction of return period by time, therefore leading to the evaluation of design recurrence interval.

Impacts of Rainfall Events and Distribution on Unsaturated Soil Slope Analysis (불포화 토사사면 해석에 대한 강우사상과 분포의 영향)

  • Kim, Jae-Hong;Kim, Ho-Kyum;Kim, Byeongsu;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • The time distribution of rainfall is one of the most important considerations for evaluating soil slope stability. In order to study the rainfall-induced slope failure, the rainfall pattern has generally been assumed as uniform rainfall intensity for rainfall duration. However, it should be noted that the time distribution of the design rainfall method has a significant effect on the soil slope instability. The study implemented Mononobe, Huff, and uniform method as three types of time distribution method of the design rainfall to estimate the factor of safety of soil slopes by rainfall duration. As a result, the difference of soil suction and unsaturated hydraulic properties in a soil by rainfall pattern was found through the application of an appropriate time distribution method to numerical simulation for rainfall-induced slope stability.

Evaluation of Raingauge Network using Area Average Rainfall Estimation and the Estimation Error (면적평균강우량 산정을 통한 강우관측망 평가 및 추정오차)

  • Lee, Ji Ho;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.103-112
    • /
    • 2014
  • Area average rainfall estimation is important to determine the exact amount of the available water resources and the essential input data for rainfall-runoff analysis. Like that, the necessary criterion for accurate area average rainfall estimate is the uniform spatial distribution of raingauge network. In this study, we suggest the spatial distribution evaluation methodology of raingauge network to estimate better area average rainfall and after the suggested method is applied to Han River and Geum River basin. The spatial distribution of rainfall network can be quantified by the nearest neighbor index. In order to evaluate the effects of the spatial distribution of rainfall network by each basin, area average rainfall was estimated by arithmetic mean method, the Thiessen's weighting method and estimation theory for 2013's rainfall event, and evaluated the involved errors by each cases. As a result, it can be found that the estimation error at the best basin of spatial distribution was lower than the worst basin of spatial distribution.

Development of methodology for daily rainfall simulation considering distribution of rainfall events in each duration (강우사상의 지속기간별 분포 특성을 고려한 일강우 모의 기법 개발)

  • Jung, Jaewon;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.141-148
    • /
    • 2019
  • When simulating the daily rainfall amount by existing Markov Chain model, it is general to simulate the rainfall occurrence and to estimate the rainfall amount randomly from the distribution which is similar to the daily rainfall distribution characteristic using Monte Carlo simulation. At this time, there is a limitation that the characteristics of rainfall intensity and distribution by time according to the rainfall duration are not reflected in the results. In this study, 1-day, 2-day, 3-day, 4-day rainfall event are classified, and the rainfall amount is estimated by rainfall duration. In other words, the distributions of the total amount of rainfall event by the duration are set using the Kernel Density Estimation (KDE), the daily rainfall in each day are estimated from the distribution of each duration. Total rainfall amount determined for each event are divided into each daily rainfall considering the type of daily distribution of the rainfall event which has most similar rainfall amount of the observed rainfall using the k-Nearest Neighbor algorithm (KNN). This study is to develop the limitation of the existing rainfall estimation method, and it is expected that this results can use for the future rainfall estimation and as the primary data in water resource design.

Application of the Beta Distribution for the Temporal Quantification of Storm Events (호우사상의 시간적 정량화를 위한 베타분포의 적용)

  • Jun, Chang-Hyun;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.531-544
    • /
    • 2012
  • This study suggested the parameter estimation method for given rainfall events to be properly expressed by the beta distribution. For this purpose, this study compared the characteristics of probability density function with the parameter proposed considering the cases with and without addition to the rainfall peak, and the cases of using the real hyetograph and the rearranged hyetograph about the rainfall peak. As an example, this study analyzed the independent rainfall events at Seoul in 2010 and the annual maximum independent rainfall events from 1961 to 2010. The results derived are as follows. First, this study confirmed the necessity of additional consideration on rainfall peak to mimic the real hyetograph of rainfall events by the beta distribution. Second, this study confirmed the case of using rearranged hyetograph about the rainfall peak derived a better beta distribution to well mimic the characteristics of real rainfall than the case using the real hyetograph.

Estimation of Design Rainfall Considering the Change of the Number of Years for Observed Data (관측년수변화를 고려한 설계강우량 산정)

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk;Hwang, Man-Ha;Lee, Sang-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.284-287
    • /
    • 2005
  • The objective of this study is to check into variation trends of design rainfall according to change of the number of years for observed data. To make comparative study of the relation between design rainfall and recorded year, this study was used maximum rainfall for 24-hr consecutive duration at Gangneung, Seoul, Incheon, Chupungnyeong, Pohang, Daegu, Jeonju, Ulsan, Gwangju, Busan, Mokpo and Yeosu rainfall stations. The tests for Independence, Homogeneity and detection of outliers were used Wald-Wolfowitz's test, Mann-Whitney's test and Grubbs and Beck test respectively. To select appopriate distribution, the distribution of genaralized pareto(GPA), generalized extreme value(GEV), generalized logistic(GLO), lognormal and pearson type 3 distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. Design rainfall was estimated by at-site frequency analysis using L-moments and Generalized extreme value(GEV) distribution according to change of the number of years for observed data. Through the comparative analysis for design rainfall induced by L-moments and GEV distribution, relationship between design rainfall and recorded year is provided.

  • PDF

Time and Spatial Distribution of Probabilistic Typhoon Storms and Winds in Korean Peninsula (한반도에 내습한 태풍의 확률강우 및 풍속의 시공적 분포 특성)

  • 윤경덕;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.122-134
    • /
    • 1994
  • The objective of this study is to provide with the hydrometeological and probabilistic characteristics of the storms and winds of typhoons that have been passed through the Korea peninsula during the last twenty-three years since 1961. The paths and intensities of the typhoons were analyzed. Fifty weather stations were selected and the rainfall and wind data during typhoon periods were collected. Rainfall data were analyzed for the patterns and probabilistic distributions. The results were presented to describe the areal distributions of probabilistic characteristics. Wind data were also analysed for their probabilistic distributions. The results obtained from this study can be summarized as follows: 1. The most frequent typhoon path that have passed through the Korean peninsula was type E, which was followed by types CWE, W, WE, and S. The most frequent typhoon intensity was type B, that was followed by A, super A, and C types, respectively. 2. The third quartile typhoon rainfall patterns appear most frequently followed by the second, first, and quartiles, respectively, in Seoul, Pusan, Taegu, Kwangju and Taejon. The single typhoon rainfalls with long rainfall durations tended to show delayed type rainfall patterns predominantly compared to the single rainfalls with short rainfall durations. 3. The most frequent probabilistic distribution for typhoon rainfall event is Pearson type-III, followed by Two-parameter lognormal distribution, and Type-I extremal distribution. 4. The most frequent probability distribution model of seashore location was Pearson type-III distribution. The most frequent probability distribution model of inland location was two parameter lognormal distribution. 5. The most frequent probabilistic distribution for typhoon wind events was Type-I xtremal distribution, followed by Two-parameter lognormal distribution, and Normal distribution.

  • PDF

Variation of design flood according to the temporal resolution and periods of rainfall (강우의 시간해상도와 자료기간에 따른 설계홍수량의 변동성)

  • Kim, Min-Seok;Lee, Jung-Hwan;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.599-606
    • /
    • 2018
  • Most hydrological analysis such as probability rainfall and rainfall time distributions have typically carried out based on hourly rainfall and rainfall - runoff analysis have carried out by applying different periods of rainfall time distribution and probability rainfall. In this study, to quantify the change of design flood due to the data type (hourly and minutely rainfall data) and the probability rainfall and application of different data period to the rainfall time distribution, probability rainfall is calculated by point frequency analysis according to data type and period and rainfall time distribution was calculated by Huff's quartile distributions. In addition, the change analysis of design flood was carried out by rainfall - runoff analysis applying different data periods of design rainfall time distribution. and probability rainfall. As a result, rainfall analysis using minute rainfall data was more accurate and effective than using hourly rainfall data. And the design flood calculated by applying different data period of rainfall time distribution and probability rainfall made a large difference than by applying different data type. It is expected that this will contribute to the hydrological analysis using minutely rainfall.

Derivation of Probable Rainfall Intensity Formula at Masan District (마산지방 확률강우강도식의 유도)

  • Kim, Ji-Hong;Bae, Deg-Hyo
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • The frequency analysis of annual maximum rainfall data and the derivation of probable rainfall intensity formula at Masan station are performed in this study. Based on the eight different rainfall duration data from 10 minutes to 24 hours, eight types of probability distribution (Gamma, Lognormal, Log-Pearson type III, GEV, Gumbel, Log-Gumbel, Weibull, and Wakeby distributions), three types of parameter estimation scheme (moment, maximum likelihood and probability weighted methods) and three types of goodness-of-fit test (${\chi}^2$, Kolmogorov-Smirnov and Cramer von Mises tests) were considered to find an appropriate probability distribution at Masan station. The Lognormal-2 distribution was selected and the probable rainfall intensity formula was derived by regression analysis. The derived formula can be used for estimating rainfall quantiles of the Masan vicinity areas with convenience and reliability in practice.

  • PDF