• Title/Summary/Keyword: Rainfall amount

Search Result 889, Processing Time 0.029 seconds

Characteristics of Soil Water Runoff and Canopy Cover Subfactor in Sloped Land with Different Soil Texture (경사지 밭토양에서 강우량과 토성에 따른 물 유출 양상 및 수관피복인자 구명)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Park, Chan-Won;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • This study was performed as an effort to reduce soil loss by investigating the phase of water flow according to soil texture and rainfall pattern and by determining the canopy cover subfactor in the RUSLE (revised universal soil loss equation). Red pepper was planted at the 15% sloped lysimeter of $2m{\times}5m{\times}0.5m$ ($width{\times}length{\times}depth$) with three different textured soils (loam, clay loam and sandy loam) and the relationship between amount and intensity of rainfall; soil loss and the amount of runoff; and amount of rainfall and runoff at different soil texture were measured at the experiment station of the National Institute of Agricultural Science and Technology (NIAST) during May to October of 2005. The amount of runoff increased with increasing amount of rainfall, showing difference in the relative increase rate of runoff at different soil texture. The increase rate of runoff with unit increase of rainfall for the lysimeter with red pepper was 0.44, 0.41 and 0.13 for loam, clayey loam and sandy loam, respectively. The minimum amount of rainfall for runoff was 23.53 mm for sandy loam, 10.35 mm for loam and 5.46 mm for clayey loam, respectively. The canopy cover subfactors of red pepper were 0.425, 0.459, and 0.478 for sandy loam, loam and clayey loam, respectively.

Spatial Interpolation of Rainfall by Areal Reduction Factor (ARF) Analysis for Hancheon Watershed

  • Kar, Kanak Kanti;Yang, Sung Kee;Lee, Junho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.427-427
    • /
    • 2015
  • The storm water management and drainage relation are the key variable that plays a vital role on hydrological design and risk analysis. These require knowledge about spatial variability over a specified area. Generally, design rainfall values are expressed from the fixed point rainfall, which is depth at a specific location. Concurrently, determine the areal rainfall amount is also very important. Therefore, a spatial rainfall interpolation (point rainfall converting to areal rainfall) can be solved by areal reduction factor (ARF) estimation. In mainland of South Korea, for dam design and its operation, public safety, other surface water projects concerned about ARF for extreme hydrological events. In spite of the long term average rainfall (2,061 mm) and increasing extreme rainfall events, ARF estimation is also essential for Jeju Island's water control structures. To meet up this purpose, five fixed rainfall stations of automatic weather stations (AWS) near the "Hancheon Stream Watershed" area has been considered and more than 50 years of high quality rainfall data have been analyzed for estimating design rainfall. The relationship approach for the 24 hour design storm is assessed based on ARF. Furthermore, this presentation will provide an outline of ARF standards that can be used to assist the decision makers and water resources engineers for other streams of Jeju Island.

  • PDF

The Review of Optimum Level of SDR in Empirical Soil Erosion Model (경험적 토사유실모형에서 SDR의 적정성 검토)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Lee, Eul-Rae;Hwang, Eui-Ho;Chae, Hyo-Sok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.774-778
    • /
    • 2010
  • Upland erosion pollutes surface waters and often causes serious problems when deposition occurs. This study builds a sediment rating curve using the measured sediment yield and the simulated soil erosion by a GIS-embedded empirical model. The coefficient of determination ($R^2$) between the simulated soil erosion and the measurement sediment yields with rainfall amount are 0.427 for Donghyang and 0.667 for Cheonchen, but the values with rainfall intensity are 0.873 and 0.927 respectively. The data are divided into two groups: one for calibration during 2002-2005 (48 months) and the other for estimation during 2006-2008 (36 months). The first data group (2002-2005) was used to derive the SDR with an aid of soil erosion calculated by the USLE and the measured sediment yield. The mean SDR with rainfall amount is 6.273 and 3.353, respectively, while 4.799 and 2.874 for rainfall intensity. But the standard deviation (STD) with rainfall intensity is 0.930 and 0.407, which is much less than that with rainfall amount (3.746 and 2.090) for both sites. The results show the derived SDR provides reasonable accuracy and rainfall intensity gives better performance in calculating soil erosion than rainfall amount.

  • PDF

Sediments Yield Estimation of Gangwon Mountain Region in Korea (강원도 산간지역의 토사유출량 산정)

  • Kwon, Hyuk-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • In this study, calculation results of sediments yield prediction models were compared with the amount of dredging data for the Inje, Gangwon mountain region of Korea. MSDPM and LADMP were used as a sediments prediction model which was calibrated and modified to calculate the sediments yield of Korean mountain region. Both sediments yield prediction models were modified by using Threshold Maximum Rainfall Intensity and Total Minimum Rainfall Intensity and correction coefficient. After comparing with the amount of dredging, it was found that results of MSDPM is more accurate than the results of LADMP. Difference of results of MSDPM and the amount of dredging is 27.6% and difference of results of LADMP and the amount of dredging is 50.6%. Both sediments yield prediction models which were calibrated in this study can be used to calculate the sediments yield for the Korean mountain region.

Optimal Reservoir Operation Models for Paddy Rice Irrigation with Weather Forecasts (II) -Model Development- (기상예보를 고려한 관개용 저수지의 최적 조작 모형(II) -모형의 구성-)

  • 김병진;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.44-55
    • /
    • 1994
  • This paper describes the development of real-time irrigation reservoir operation models that adequately allocate available water resources for paddy rice irrigation. Water requirement deficiency index(WRDI) was proposed as a guide to evaluate the operational performance of release schemes by comparing accumulated differences between daily release requirements for irrigated areas and actual release amounts. Seven reservoir release rules were developed, which are constant release rate method (CRR), mean storage curve method(MSC), frequency analysis method of reservoir storage rate(FAS), storage requirement curve method(SRC), constant optimal storage rate method (COS), ten-day optimal storage rate method(TOS), and release optimization method(ROM). Long-term forecasting reservoir operation model(LFROM) was formulated to find an optimal release scheme which minimizes WRDIs with long-term weather generation. Rainfall sequences, rainfall amount, and evaporation amount throughout the growing season were to be forecasted and the results used as an input for the model. And short-term forecasting reservoir operation model(SFROM) was developed to find an optimal release scheme which minimizes WRDIs with short-term weather forecasts. The model uses rainfall sequences forecasted by the weather service, and uses rainfall and evaporation amounts generated according to rainfall sequences.

  • PDF

Impact of Vegetation Heterogeneity on Rainfall Excess in FLO-2D Model : Yongdam Catchment (용담댐 유역에서 식생 이질성이 FLO-2D 유량 산정에 미치는 영향)

  • Song, Hojun;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.259-266
    • /
    • 2019
  • Two main sources of data, meteorological data and land surface characteristics, are essential to effectively run a distributed rainfall-runoff model. The specification and averaging of the land surface characteristics in a suitable way is crucial to obtaining accurate runoff output. Recent advances in remote sensing techniques are often being used to derive better representations of these land surface characteristics. Due to the mismatch in scale between digital land cover maps and numerical grid sizes, issues related to upscaling or downscaling occur regularly. A specific method is typically selected to average and represent the land surface characteristics. This paper examines the amount of flooding by applying the FLO-2D routing model, where vegetation heterogeneity is manipulated using the Manning's roughness coefficient. Three different upscaling methods, arithmetic, dominant, and aggregation, were tested. To investigate further, the rainfall-runoff model with FLO-2D was facilitated in Yongdam catchment and heavy rainfall events during wet season were selected. The results show aggregation method provides better results, in terms of the amount of peak flow and the relative time taken to achieve it. These rwsults suggest that the aggregation method, which is a reasonably realistic description of area-averaged vegetation nature and characteristics, is more likely to occur in reality.

Modeling Effective Rainfall for Upland Crops (밭에서의 유효우량 산정모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 1993
  • A model for estimating daily effective rainfall of upland crops was developed. The infiltration process was described by Green-Ampt infiltration model developed by Chu(1978). The model considers delayed surface ponding and surface detention storage under a uniform soil profile. The Green-Ampt parameters, that is, average hydraulic conductivity and average capillary pressure head on a sandy loam soil were determined from field experiment using Air-entry permeameter developed by Bouwer(1966). The model was verified by comparing measured and simulated surface runoff. The ratios of effective rainfall to total rainfall for red pepper, soybean, sesame and Chinese cabbage were evaluated using Borg's root growth model( 1986) respectively. The followings are a summary of this study results; 1.In a sandy loam soil average hydraulic conductivity was 3.28cm/hr and average capillary pressure head was 3.00cm. 2.The root growth of upland crops could be expressed by Borg's root growth model successively. 3.The measured and simulated surface runoff was agreed well with each other. 4.As the rainfall amount was increased, the ratio of effective rainfall to total rainfall was decreased exponentially till a certain growing period.

  • PDF

Evaluation of the Effective Rainfal on Upland by Lysimeter (라이시미터를 이용한 밭에서의 유효우량 산정)

  • 박승찬;정하우;최진용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.87-92
    • /
    • 1999
  • The evaluation of the effective rainfall is important in the desgin and operation of irrigation systems. But the difinition of the effective rainfall and the method for the estimating effective rainfall is various for each purpose . In this paper, the effective rainfall was defined as amount of rainfall which is remained in the effective soil depth that can be use to consumptive use of crop during growing season. The sol moisture was measured by Neutron prob for the effective rainfall estimation, and theexperiment was conducted for mulched and non-mulched condition of lysimeter during growing season. By the result of analysis and the former definition, the effective rainfall was estimated to be 37.2% for the mulched lysimeter and 40.7% for the non-mulched lysimeter.

  • PDF

Estimation of Rainfall-runoff Erosivity Using Modified Institute of Agricultural Sciences Index (수정 IAS 지수를 이용한 강우침식인자 추정)

  • Lee, Joon-Hak;Oh, Kyoung-Doo;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.619-628
    • /
    • 2011
  • The purpose of this study is to evaluate the existing method of calculating rainfall-runoff erosivity using monthly precipitation, such as Fournier's index, modified Fournier's index, IAS (Institute of Agricultural Sciences) index, etc., and to present more reasonable regression model based on monthly rainfall data in Korea. This study introduced a new simplified method of calculating rainfall-runoff erosivity based on monthly precipitation, called by modified IAS index. It was expanded form IAS index which is the simple calculation method by summing up the rainfall amount of two months with maximum amount. Monthly precipitation and annual rainfall-runoff erosivity at 21 weather stations for over 25 years were used to analyze correlation relationship and regression model. The result shows that modified IAS index is the more reasonable parameter for estimating rainfall-runoff erosivity of the middle-western and south-western regions in Korea.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 2. Rainfall Event-based Analysis (유역 내에서의 산사태에 의한 토사발생특성 분석 2. 강우사상별 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. The results of the analysis on characteristics of sediment produce according to rainfall events showed that the sediment produce by landslide was mainly contributed to rainfall intensity and its temporal clustering. The results of the analysis on characteristics of sediment produce by extreme events showed that remaining rainfall amount of typhoon 'Rusa' was much more than that of the other extreme events, and thus this remaining rainfall was to contribute to sediment transportation. Additionally, only a small number of extreme events were found to cause most amount of sediment produce in a basin.