• Title/Summary/Keyword: Rainfall Rate

Search Result 771, Processing Time 0.029 seconds

Combining Four Elements of Precipitation Loss in a Watershed (유역내 네가지 강수손실 성분들의 합성)

  • Yoo, Ju-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.200-204
    • /
    • 2012
  • In engineering hydrology, an estimation of precipitation loss is one of the most important issues for successful modeling to forecast flooding or evaluate water resources for both surface and subsurface flows in a watershed. An accurate estimation of precipitation loss is required for successful implementation of rainfall-runoff models. Precipitation loss or hydrological abstraction may be defined as the portion of the precipitation that does not contribute to the direct runoff. It may consist of several loss elements or abstractions of precipitation such as infiltration, depression storage, evaporation or evapotranspiration, and interception. A composite loss rate model that combines four loss rates over time is derived as a lumped form of a continuous time function for a storm event. The composite loss rate model developed is an exponential model similar to Horton's infiltration model, but its parameters have different meanings. In this model, the initial loss rate is related to antecedent precipitation amounts prior to a storm event, and the decay factor of the loss rate is a composite decay of four losses.

  • PDF

Characteristics of Non-point Pollutant Discharge from Upper Watershed of Seomjin Dam during Rainy Season (섬진강댐 상류 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Dong-Heui;Yoo, Seung-Joon;Kim, Ji-Hoon;Lim, Ik-Hyun;Kwon, Ji-Young;Chung, Paul-Gene
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • This study was carried out to investigate the characteristics of the pollutant discharge from non-point source and to estimate the unit loads of the pollutant discharge from the upper watershed of Seomjin Dam during rainy season. The upper watershed of Seomjin Dam is located in the middle of Jeonbuk province is formed two tributaries mainly. A sub-branch stream of those tributaries is Imsil stream of which flow rate is about 13% of the main stream of Seomjin reservoir normally. On the basis of measurement result in this study, the water quality of Imsil stream was fluctuated highly and the quantity of measured pollutant discharge was higher than the value calculated with the proportion of flow rate during dry season. On the contrary, during rainy season the mean values of flow rate and water quality were higher than the quartile according to the statistical analysis. That means rainfall can influence strongly on the water quality of the upper watershed of Seomjin reservoir. Among the several criteria of water quality, SS discharge was most sensitive to the flow rate variation of stream, which was fluctuated in proportion of rainfall, basically. It was evaluated the event mean concentration (EMC) of non-point source pollutants depending on rainfall events as well. Though the pollutant discharge unit of Imsil stream was lower than the main stream of Seomjin reservoir, the EMC value of Imsil stream was higher than the main stream of Seomjin reservoir.

Analysis of First Flushing Effects for the Vineyard Storm Runoff (강우시 포도밭에 대한 초기세척효과 분석)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Lee, Jae-Woon;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.977-986
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff in the orchard areas and quantitatively estimated effluence of nonpoint source pollutants for the volume of runoff. Two target areas under vine cultivation were each $2,000m^2$ and $1,800m^2$, located in Gyeongju City. Since grape was the only crop on the target area, the characteristics of stormwater runoff at vineyard could be evaluated independently. A total of 51 rainfall events in the vineyard area during two years(2008-2009) was surveyed, and 19 of them became stormwater runoff, with rainfall ranging 16.5 - 79.7 mm and antecedent dry period of 1-13 days. The pollutant runoff loads by volume of stormwater runoff showed BOD ranging 19.5 - 45.3% in 30% of runoff volume. The average pollution discharge rate was 32.4%, indicating small first flush effect of BOD. The range of SS concentrations was 5 - 52.0% in 10% of runoff volume, showing the average 28.7% of discharge rate, about 3 times more than rainfall effluent. TOC and TN appeared to be similar to the results of BOD, the average discharge rate of 30.9% and 30.6% for TOC and TN, respectively, for 30% of stormwater runoff volume. Average discharge rate of COD and TP in the same runoff volume was 35.1% and 36%, respectively, showing comparatively high discharge ratio. As the targeted vineyard area was permeable land, the pollution load ratio against rainfall-runoff volume appeared to be 1:1, implying no strong first flush effect for all the survey items.

Kinetic Energy Rate of the Rain Drops Based on the Impact Signal Analysis (충격 신호 분석에 기반한 우적의 운동 에너지율)

  • Moraes, Macia C. da S.;Tenorio, Ricardo S.;Sampaio, Elsa;Barbosa, Humberto A.;dos Santos, Carlos A.C.;Yoon, Hong-Joo;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.743-754
    • /
    • 2019
  • The erosive potential of precipitation can be evaluated by the kinetic energy transferred to the soil by the impact of the rain drop. A kinetic energy rate of the rain drops was estimated by the disdrometer classifying impact signals. This equation in the form of power presented an adjustment measure between the rain rate and rainfall quantity of 97% and 95% for continental and maritime rains, respectively. The exponent of the power equation, initially, shows no dependence on the type of rainfall. However, the multiplicative factor presented variation, which can be adjusted according to rainfall events. This equation was validated by the coefficient of determination, the average absolute error and the confidence error. The kinetic energy of precipitation, associated to certain types of soil, will allow the determination of the potential of the erosion caused by the rains.

Characterization Of Rainrate Fields Using A Multi-Dimensional Precipitation Model

  • Yoo, Chul-sang;Kwon, Snag-woo
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.147-158
    • /
    • 2000
  • In this study, we characterized the seasonal variation of rainrate fields in the Han river basin using the WGR multi-dimensional precipitation model (Waymire, Gupta, and Rodriguez-Iturbe, 1984) by estimating and comparing the parameters derived for each month and for the plain area, the mountain area and overall basin, respectively. The first-and second-order statistics derived from observed point gauge data were used to estimate the model parameters based on the Davidon-Fletcher-Powell algorithm of optimization. As a result of the study, we can find that the higher rainfall amount during summer is mainly due to the arrival rate of rain bands, mean number of cells per cluster potential center, and raincell intensity. However, other parameters controlling the mean number of rain cells per cluster, the cellular birth rate, and the mean cell age are found invariant to the rainfall amounts. In the application to the downstream plain area and upstream mountain area of the Han river basin, we found that the number of storms in the mountain area was estimated a little higher than that in the plain area, but the cell intensity in the mountain area a little lower than that in the plain area. Thus, in the mountain area more frequent but less intense storms can be expected due to the orographic effect, but the total amount of rainfall in a given period seems to remain the same.

  • PDF

부산시 동래 온천지역의 양수량, 온천수위, 강수량의 관련성 연구

  • 차용훈;함세영;정재열;장성;손건태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.455-458
    • /
    • 2004
  • This study uses time series analyses to evaluate fluctuation of water levels in a geothermal water well due to pumping, in relation to rainfall at Dongrae hot-spring site on the southeastern coast of tile Korean peninsula. The volume of water pumped from the public study wells ranges from 542 to 993 m$^3$/month, and the minimum water level ranged from 35 to 144.7 m during the measured period. Autocorrelation analysis was conducted for the withdrawal rate at the public wells, water levels and rainfall. The autocorrelation of the withdrawal rate shows distinct periodicity with 3 months of lag time, the autocorrelation of rainfall shows weak linearity and short memory with 1 months of lag time, and the autocorrelation of water levels shows weak linearity and short memory with 2 months of lag time. The cross-correlation between the pumping volume and the minimum water level shows a maximum value 1 at a delayed time of 34 months. The cross-correlation between rainfall and the minimum water level shows a maximum value of 0.39 at a delayed time of 32 months.

  • PDF

The Development of Point Heavy Rainfall Model Based on the Cloud Physics (구름 물리학을 토대로한 지점 호우모형 개발)

  • 이재형;선우중
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.51-59
    • /
    • 1992
  • Recently the pysically based precipitation model was developed by Geogakakos and Bras(1984) for the storm event. This is a modified version of the model. In a different way from the model, in this paper, it is emphasized that the hyderometeor size distribution(HSD)is subject to rainfall intensity and effects on the productivity of precipitation. The to HSD functions are applied to the equation of the outflow after mass through the cloud top and base, products of rainfall rate at the ground level, storage of cloud layer. As an input we put the meterological data observed at Chonju in Korea in our models and adjust the parameters included in it. The result show that in the model there is significant deviation between the hourly calculated rainfall rate and the observed data, while it is very small in the our model based on the two HSD.

  • PDF

Influence of Rainfall on Germination of Malting Barley at Harvesting Season (수확기의 강우가 맥주보리 발아에 미치는 영향)

  • 김석현;최창휴
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.6
    • /
    • pp.705-710
    • /
    • 1995
  • In order to find out the effect of rainfall at harvesting season on germination of malting barley, the seeds sampled from Cheju island and southern part of Korea were examined. The germination rate of seeds from Cheju island where rainfall was frequent at harvesting season, ranged from 46 to 71%, even though disease infection of the seeds was not that serious as would be expected. High sugar content of seed was resulted from the degradation of carbohydrates during the harvest season. From TZ test the rainfall - affected seeds were found to be highly viable but in the state of secondary dormancy. Results of cold germination test showed that the seeds were recovered from the secondary dormancy. Therefore, it was recommended that the seeds affected by the rainfall at harvesting season should be utilized after 12 months when the dormancy period terminated. The germination percent of the seeds was significantly enhanced by prechilling and / or 1 ppm gibberellic acid treatment. Different seed lots showed different rate of germination and the degree of dormancy.

  • PDF

Assessment of Rainfall Runoff and Flood Inundation in the Mekong River Basin by Using RRI Model

  • Try, Sophal;Lee, Giha;Yu, Wansik;Oeurng, Chantha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.191-191
    • /
    • 2017
  • Floods have become more widespread and frequent among natural disasters and consisted significant losses of lives and properties worldwide. Flood's impacts are threatening socio-economic and people's lives in the Mekong River Basin every year. The objective of this study is to identify the flood hazard areas and inundation depth in the Mekong River Basin. A rainfall-runoff and flood inundation model is necessary to enhance understanding of characteristic of flooding. Rainfall-Runoff-Inundation (RRI) model, a two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously, was applied in this study. HydoSHEDS Topographical data, APPRODITE precipitation, MODIS land use, and river cross section were used as input data for the simulation. The Shuffled Complex Evolution (SCE-UA) global optimization method was integrated with RRI model to calibrate the sensitive parameters. In the present study, we selected flood event in 2000 which was considered as 50-year return period flood in term of discharge volume of 500 km3. The simulated results were compared with observed discharge at the stations along the mainstream and inundation map produced by Dartmouth Flood Observatory and Landsat 7. The results indicated good agreement between observed and simulated discharge with NSE = 0.86 at Stung Treng Station. The model predicted inundation extent with success rate SR = 67.50% and modified success rate MSR = 74.53%. In conclusion, the RRI model was successfully used to simulate rainfall runoff and inundation processes in the large scale Mekong River Basin with a good performance. It is recommended to improve the quality of the input data in order to increase the accuracy of the simulation result.

  • PDF

An Empircal Model of Effective Path Length for Rain Attenuation Prediction (강우감쇠 유효경로 길이 예측을 위한 경험 모델)

  • 이주환;최용석;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.813-821
    • /
    • 2000
  • The engineering of satellite communication systems at frequencies above 10GHz requires a method for estimating rain-caused outage probabilities on the earth-satellite path. A procedure for predicting a rain attenuation distribution from a point rainfall rate distribution is, therefore, needed. In order to predict rain attenuation on the satellite link, several prediction models such as ITU-R, Global, SAM, DAH model, have been developed and used at a particular propagation condition, they may not be appropriate to a propagation condition in Korean territory. In this paper, a new rain attenuation prediction method appropriate to a propagation condition in Korea is introduced. Based on the results from ETRI measurements, a new method has been derived for an empirical approach with an identification on the horizontal correction factor as in current ITU-R method, and the vertical correction factor has been suggested with decreasing power law as a function of rainfall rate. This proposed model uses the entire rainfall rate distribution as input to the model, while the ITU-R and DAH model approaches only use a single 0.01% annual rainfall rate and assume that the attenuation at other probability levels can be determined from that single point distribution. This new model was compared with several world-wide prediction models. Based on the analysis, we can easily know the importance of the model choice to predict rain attenuation for a particular location in the radio communication system design.

  • PDF