• Title/Summary/Keyword: Rainfall Rate

Search Result 771, Processing Time 0.028 seconds

Responses of Lactuca Sativa (Lettuce) to Fertilization Rates at Various Soil Moisture Conditions at Protected Cultivation

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Han, Kyoung-Hwa;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.50-56
    • /
    • 2015
  • This research was performed to test the hypothesis that the optimal fertilization rate for lettuce is various with soil moisture conditions. The experiment was conducted under a rainfall-intercepted facility in Suwon, South Korea from 2002 to 2003. Soil was irrigated at 30, 50, or 80 kPa of soil moisture tension at 15 cm soil depth in 2002 spring and fall and 20, 30, 50, or 80 kPa in 2003 spring. Fertilization was performed with four levels in spring for both years: none, 0.5, 1.0, and 1.5 times of the recommended N, P, and K fertilization rate. The irrigation amount increased with decreased irrigation starting point as soil moisture tension. The maximum yield was found at the lowest soil moisture tension in spring while irrigation at 50 kPa resulted in the greatest yield in fall. The yield responses of lettuce to fertilization rates were various with soil moisture condition. In spring, maximum yield was found at 1.0 or 1.5 times of the recommended fertilization rate at 20, 30, and 50 kPa irrigation while 0.5 or 1.0 times of fertilization rate resulted in the maximum yield in fall. Especially for 80 kPa irrigation in 2003 spring, yield was decreased by fertilization. It suggested that the optimum fertilization rate for lettuce is affected by soil moisture condition and that lower fertilization rate should be suggested when soil is managed in drier condition.

Hydrological Feasibility for Heightening Dae-ah Reservoir (대아지 숭상을 위한 수문학적 가능성 평가)

  • Noh, Jae-Kyoung;Lee, Jae-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.225-235
    • /
    • 2008
  • The objective of this study is to evaluate the hydrological feasibility of heightening the Dae-ah reservoir in order to save instream flow at the Bong-dong station situated in the Mankyoung river. The results are summarized as follows. Firstly, from the Dong-sang and Dae-ah cascaded reservoir's water balance analysis, water supply indexes of the Dae-ah reservoir were analyzed to have the rate of water supply divided by watershed area of 1207.4 mm, the rate of water supply divided by rainfall of 95.8%, the rate of water supply divided by inflow of 153.1%, the rate of water supply divided by storage capacity of 236.1%, and the rate of inflow divided by storage capacity of 200.6%. Secondly, from the Dae-ah and Kyoung-cheon paralleled reservoir's water balance analysis, flow durations at the Bong-dong station were analyzed to have the Q95 (the 95th high flow) of $28.95m^3/s$, the Q185 (the 185th high flow) of $2.00m^3/s$, the Q275 (the 275th high flow) of $2.00m^3/s$, and the Q355 (the 355th high flow) of $0.82m^3/s$. Thirdly, in case of heightening the full water level of the Dae-ah reservoir of 10m, from the Dong-sang and Dae-ah cascaded reservoir's water balance analysis, water supply indexes of the Dae-ah reservoir were analyzed to have the rate of water supply divided by watershed area of 1220.7 mm, the rate of water supply divided by rainfall of 96.8%, the rate of water supply divided by inflow of 154.6%, the rate of water supply divided by storage capacity of 160.0%, and the rate of inflow divided by storage capacity of 137.0%. Fourthly, in case of heightening the full water level of the Dae-ah reservoir of 10m, from the Dae-ah and Kyoung-cheon paralleled reservoir's water balance analysis, flow durations at the Bong-dong station were analyzed to have the Q95 of $28.09m^3/s$, the Q185 of $1.79m^3/s$, the Q275 of $1.79m^3/s$, and the Q355 of $0.82m^3/s$. The conclusion appeared not to have the hydrological feasibility of heightening the Dae-ah reservoir from the reason that increased storage capacity does not increase water supply amount any more because of the high rate of the water supply divided by inflow.

  • PDF

A Study on the Relation Characteristics between Bubble Size Distribution and Floating Time (버블의 크기별 입도분포와 부상시간과의 상관특성에 관한 연구)

  • Jeon, Gun;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.277-281
    • /
    • 2017
  • Lately rainfall characteristics that it rains a lot in a short space of time often occurs. Because of this meteorological phenomena, the flow rate and concentration of initial rainfall for runoff and combined sewer overflows are changed. In the case of this inlet fluctuation, the flotation method at high surface loading rate is suitable for water quality management. the flotation method is able to meet the removal rate requirements of water public zone in 5 to 10 min which is irelatively short period. For assessment and diagonision of flotation method, A/S ratio is applied until now. But unfortunately, this has some limits for evaluation standard for certification and assessment of technical diagnosis and operation. This is why there is different efficiency in the bubble distribution at the same A/S ratio. The velocity and time of floating is changed by the different bubble distributions. The floating time affects the plant volume because the time factor make size dicision. Therefore the charateristics of bubble distribution and floating time at the same A/S ratio is necessary to apply to evaluation standard for certification and assessment of technical diagnosis and operation. For generalization of the method in certification and assessment, the characteristics of bubble distribution was studied. Until recently, using the optical device and shooting live video, there are some analysis technology of the floating factors. But this kind of technology is influenced by the equipment. with this level of confidence about the results, it is difficult to apply to generalize. According this reasons, this study should be applied on experiment generalization of method about measurement of relation between bubble distribution and floating time.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Using Extended Kalman Filter for Real-time Decision of Parameters of Z-R Relationship (확장 칼만 필터를 활용한 Z-R 관계식의 매개변수 실시간 결정)

  • Kim, Jungho;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.119-133
    • /
    • 2014
  • The study adopted extended Kalman filter technique in an effort to predict Z-R relationship parameter as a stable value in real-time. Toward this end, a parameter estimation model was established based on extended Kalman filter in consideration of non-linearity of Z-R relationship. A state-space model was established based on a study that was conducted by Adamowski and Muir (1989). Two parameters of Z-R relationship were set as state variables of the state-space model. As a result, a stable model where a divergence of Kalman gain and state variables are not generated was established. It is noteworthy that overestimated or underestimated parameters based on a conventional method were filtered and removed. As application of inappropriate parameters might cause physically unrealistic rain rate estimation, it can be more effective in terms of quantitative precipitation estimation. As a result of estimation on radar rainfall based on parameters predicted with the extended Kalman filter, the mean field bias correction factor turned out to be around 1.0 indicating that there was a minor difference from the gauge rain rate without the mean field bias correction. In addition, it turned out that it was possible to conduct more accurate estimation on radar rainfall compared to the conventional method.

Variations of Summertime Temperature Lapse Rate within a Mountainous Basin in the Republic of Korea -A case study of Punch Bowl, Yanggu in 2009- (우리나라 산악분지의 여름철 기온감률 변화 -2009년 양구 펀치볼을 사례로-)

  • Choi, Gwang-Yong;Lee, Bo-Ra;Kang, Sin-Kyu;John, Tenhunen
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.4
    • /
    • pp.339-354
    • /
    • 2010
  • In this study, diurnal and intra-seasonal variations of summertime temperature lapse rate (TLR) by synoptic weather conditions in a mountainous basin are examined based on hourly temperature data observed in 2009 summer at an Automatic Weather Station (AWS) network deployed in Haean basin (called Punch Bowl), Yanggu in the Republic of Korea. Summertime average TLR between the top and bottom of the basin is $-0.53^{\circ}C$/100m. Due to its diurnal variations, TLR shows the lowest by $-0.25^{\circ}C$/100m at 6AM, while it maximizes up to $-0.85^{\circ}C$/100m between 4PM~5PM. Comparisons of daily average TLRs by synoptic weather patterns reveal that the magnitude of TLRs is greatest in the order of rainy days ($-0.63^{\circ}C$/100m), heavy rainfall days ($-0.53^{\circ}C$/100m), partly cloudy days ($-0.47^{\circ}C$/100m), and sunny days ($-0.39^{\circ}C$/100m). At dawn on sunny days in summer, strong cooling pools accompanying temperature inversion layers are formed within the basin, while on heavy rainfall days, warming pools are observed due to relatively low TLRs associated with the reduction of surface radiation cooling by clouds.

  • PDF

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

Responses of Capsicum annum (red pepper) to Fertilization Rates at Various Soil Moisture Conditions

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Han, Kyoung-Hwa;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.332-339
    • /
    • 2014
  • This research was performed to test the hypothesis that the optimal fertilization rate for red pepper is changed by soil moisture condition. The experiment was conducted in rainfall-intercepted fields in Suwon, South Korea from 2002 to 2003. Soil was irrigated at 30, 50, or 80 kPa of soil moisture tension at 20 cm soil depth in 2002 and 30, 50, 100, or 150 kPa in 2003. For both years, fertilization was performed with four levels: none, 0.5, 1, and 1.5 times of the recommended N, P, and K fertilization rate. The irrigation amount was the greatest at 30 kPa irrigation while the water use efficiency increased with decrease of irrigation amount. The Irrigation amount was 508 mm at 30 kPa irrigation and ranged from 355 mm to 435 mm at 50 kPa irrigation. The maximum yield was found at 30 kPa irrigation and 1.5 times of the recommend fertilization rate in 2002 and 2003. The yield index of red pepper increased linearly with the fertilization rate at 30 kPa which implied that excess irrigation induced nutrient leaching and reduced nutrient availability. The maximum yield in 50 kPa and 80 kPa was found at the recommend fertilization rate while the yield decreased by fertilization at 100 kPa and 150 kPa irrigation. It implies that reduction of fertilization is the feasible practice to mitigate drought stress in fields without stable irrigation resources.

Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA (SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측)

  • Jang, Yujin;Park, Jongtae;Seo, Dongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

Characteristics of TOC Distribution in Lake Hapcheon (합천호의 TOC 분포 특성)

  • Seong, Jin-Uk;Kim, Hyung-Jin;Park, Jae-Chul
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.711-719
    • /
    • 2011
  • This study was conducted to estimate the distribution characteristics and budget of organic matter in the Lake Hapcheon. In the dry season, the concentration ranges of organic carbons were similar, but in the rainfall season, it showed about double concentrations. Changes of vertical water quality in the lake, there were no big differences with the concentration by the depth. However, it tends to be relatively high on the surface, a little low on the mid-depth and high in the lake bottom. DOC rate at TOC, it was lower than POC rate at inflow and DOC rate was higher than POC rate in the lake and discharging water. R-DOC accounted for more 80% of DOC rate in all investigated areas, therefore we judge that this R-DOC is to increase the organic carbon pollution gradually. As the result of the calculated organic carbon budget in the Lake Hapcheon, the amount of allochthonous, autochthonous and release were 3,552, 3,288, 228 tonC/year, respectively. the amount of discharge, decomposition and sedimentation were 504, 1,344, 5,520 tonC/year, respectively. According to this investigation, the changed amount of organic matter in the Lake Hapcheon recorded -300 tonC/year with the increase of 7,068 tonC/year and the decrease of 7,368 tonC/year.