• Title/Summary/Keyword: Rainfall Rate

Search Result 771, Processing Time 0.031 seconds

Rainfall-Runoff Analysis of a Rural Watershed (농촌유역의 강우-유출분석)

  • Kim, Ji-Yong;Park, Ki-Jung;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.93-98
    • /
    • 2001
  • This study was performed to analyse the rainfall and the rainfall-runoff characteristics of a rural watershed. The Sangwha basin($105.9km^{2}$) in the Geum river system was selected for this study. The arithmetic mean method, the Thiessen's weighing method, and the isohyetal method were used to analyse areal rainfall distribution and the Huff's quartile method was used to analyse temporal rainfall distribution. In addition, daily runoff analyses were peformed using the DAWAST and tank model. In the model calibration, the data from June through November, 1999 were used. In the model calibration, the observed runoff depth was 513.7mm and runoff rate was 45.2%, and the DAWAST model simulated runoff depth was 608.6mm and runoff rate was 53.5%, and the tank model runoff depth was 596.5mm and runoff rate was 52.5%, respectively. In the model test, the data from June through November, 2000 were used. In the model test, the observed runoff depth was 1032.3mm and runoff rate was 72.5%, and the DAWAST model simulated runoff depth was 871.6mm and runoff rate was 61.3%, and the tank model runoff depth was 825.4mm and runoff rate was 58%, respectively. The DAWAST and tank model's $R^{2}$ and RMSE were 0.85, 3.61mm, and 0.85, 2.77mm in 1999, and 0.83, 5.73mm, and 0.87, 5.39mm in 2000, respectively. Both models predicted low flow runoff better than flood runoff.

  • PDF

Effect of Antecedent Rainfall on Infiltration Characteristics in Unsaturated Soil (선행강우의 영향에 따른 불포화토의 침투특성 분석)

  • Yoon, Gwi-Nam;Shin, Hosung;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.5-15
    • /
    • 2015
  • One-dimensional rainfall laboratory tests using gneissic weathered soil were conducted to investigate effect of antecedent rainfall on infiltration characteristics. Experimental results using samples from Chuncheon and Chungju sites showed that rainfall onto the ground surface decreased initial negative pore water pressure of unsaturated soils, which recovered gradually after the end of rainfall. Rainfall intensity increases water infiltration rate, and infiltration rate during main rainfall is faster than that of the preceding rainfall. It is considered that higher water saturation after antecedent rainfall increases water infiltration rate during main rainfall. In particular, Chungju sample with higher clay content had slower recovery of negative pore water pressure and infiltration rate. Numerical results using finite element slope stability analysis showed that reduction of initial negative pore pressure due to rainfall infiltration deteriorates slope stability, and diffusion of pore water pressure after the end of rainfall further reduces FS of the slope in the short term. Main rainfall after prior rainfall further reduced factor of safety of the unsaturated slope. Pattern of antecedent rainfall has a significant impact on the magnitude and distribution of initial pore water pressure in unsaturated soils which are controlling factor to assess factor of safety of unsaturated slope during rainfall.

유구지역에서의 누적강수량과 지하수수위강하를 이용한 지하수함양율 추정

  • 이주영;이기철;정형재;정성욱
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.515-518
    • /
    • 2003
  • Groundwater recharge rate can be estimated from groundwater head rebound due to rainfall. Groundwater level changes are monitored for 10 months at Yugu area. Difference between two recharge rates calculated by rainfall and by effective rainfall is 1.1%~1.6%. Since this method ignores soil water percolation during groundwater level regression, the actual recharge rate may be higher than estimated one by cumulative rainfall and groundwater level change.

  • PDF

Scavenging Properties of Atmospheric Carbon by Precipitation

  • Hwang, Kyung-Chul;Ma, Chang-Jin;Cho, Ki-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.77-85
    • /
    • 2004
  • In order to investigate the scavenging property of airborne carbonaceous particles by precipitations, rainwater, snow sample, and total suspended particulate matter (TSP) were collected at a heavily industrialized urban site. Elemental carbon (EC) contents of both rainwater and snow water were deter-mined using elemental analysis system. EC concentrations in rain samples varied from 33.6 to 166.6 $\mu\textrm{g}$ L$^{-1}$ with an average 47.2 $\mu\textrm{g}$ L$^{-1}$ . On the other hand, those of snow samples in three times snow events were ranged from 122.4 to 293.3 $\mu\textrm{g}$ L$^{-1}$ . As might be expected, EC showed the significantly high scavenging rate at the initial rainfall. The average total carbon (TC) scavenging rate by washout mechanisms was 57.6% for five rainfall events. The scavenging rate of EC gradually increased in proportion to the increasing rainfall intensity and rainfall amount.

Rainfall Rate Forecasting for Satellite Link Analysis (위성링크분석을 위한 강우강도예측)

  • Dung, Luong Ngoc Thuy;Sohn, Won
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.53-56
    • /
    • 2014
  • In the satellite system design, the design processes from the initial design to launch take about 5 years and the broadcasting satellite lifetime goes over 15 years. Furthermore, global warming phenomenon causes rainfall rate to increase more and more in some regions on the earth. Consequently, at the stage of the satellite link design, we need to consider the future rain attenuation over 20 years. In this paper, we investigated a time-series system model for forecasting to consider the future rainfall rate for the satellite broadcasting service. We found that rainfall rate of the future 20 years is increasing continuously.

The Flow rate estimation of CSOs using EC Data (전기전도도를 이용한 CSO의 유량 추정)

  • Choi, Weon-Suk;Song, Chang-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.751-757
    • /
    • 2011
  • The monitoring technique based on electrical conductivity (EC) can provide researchers with some advantages in maintenance management and is cost-effective as compared with existing CSOs monitoring. In this study, the flow rate estimation using EC data was executed in two sites where storm overflow chamber had installed. In the result of A-site, R2 of second order multinomial between dilution ratio of EC and observed flow rate was showed the range of 0.68 ~ 0.77. And $R^{2}$ of B-site was 0.62 ~ 0.81. On the other hand, cumulative frequency of A-site was 43.4 ~ 52.2% in the relative error level of under 20%. And B-site was 10.1 ~ 46.5%. The flow rate estimation formula was improved through consideration of some parameters including antecedent dry days and rainfall duration. And difference between estimated flow rate and observed flow rate in total rainfall event was very small.

Optimal Reservoir Operation Models for Paddy Rice Irrigation with Weather Forecasts (II) -Model Development- (기상예보를 고려한 관개용 저수지의 최적 조작 모형(II) -모형의 구성-)

  • 김병진;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.44-55
    • /
    • 1994
  • This paper describes the development of real-time irrigation reservoir operation models that adequately allocate available water resources for paddy rice irrigation. Water requirement deficiency index(WRDI) was proposed as a guide to evaluate the operational performance of release schemes by comparing accumulated differences between daily release requirements for irrigated areas and actual release amounts. Seven reservoir release rules were developed, which are constant release rate method (CRR), mean storage curve method(MSC), frequency analysis method of reservoir storage rate(FAS), storage requirement curve method(SRC), constant optimal storage rate method (COS), ten-day optimal storage rate method(TOS), and release optimization method(ROM). Long-term forecasting reservoir operation model(LFROM) was formulated to find an optimal release scheme which minimizes WRDIs with long-term weather generation. Rainfall sequences, rainfall amount, and evaporation amount throughout the growing season were to be forecasted and the results used as an input for the model. And short-term forecasting reservoir operation model(SFROM) was developed to find an optimal release scheme which minimizes WRDIs with short-term weather forecasts. The model uses rainfall sequences forecasted by the weather service, and uses rainfall and evaporation amounts generated according to rainfall sequences.

  • PDF

The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept (불포화토이론을 이용한 강우시 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Shin, Min-Ho;Kim, Soo-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.25-31
    • /
    • 2004
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall Infiltration show that rainfall Infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

Study on Slope Prevention Effect of Eco-environmental Riprap Structure (친환경 호안구조물의 사면보호 효과에 관한 연구)

  • Kim, Khi-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.47-51
    • /
    • 2009
  • The slope failure in the country is caused by mainly rainfall and its type is reported shallow slope failures in general. To investigate the cause of slope failure, the unsaturated soil slope behavior in accordance with rainfall amount studies actively, but there are little studies related the slope erosion and scour by rainfall. The slope erosion and scour by rainfall cause environmental pollution and slope instability, however there are few methods to effectively control them. This research analyzed experimentally how infinite gradients are infiltrated according to the changes of amount of rainfall and the slope of gradients by manufacturing the model of gradient in order to investigate how rainfall infiltrates regarding homogeneous gradients and slope protection method. For this, this experiment measured and analyzed discharge, storage rate occurring in gradients by going on changing amount of rainfall, slope of gradients.

  • PDF

Characteristics of Organic Matters in the Suyeong River During Rainfall Event (강우 시 수영강 유역 내 유기물질의 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Urban stormwater runoff is the one of the most extensive causes of deterioration of water quality in streams in urban areas. Especially, in the Suyeong River watershed, non-point sources from urban-residential areas are the most common cause of water pollution. Also, it has been ascertained that BOD and COD as indexes of organic matter, have limitation on management of Suyeong River's water quality. In this study, changes of organic matter properties of Suyeong River from inflow of non-point source during rainfall were investigated. Fractions of organic matters were analyzed using water samples collected at two sites (Suyeong River and Oncheon Stream) during a rain event. Variations of dissolved organic carbon (DOC) concentration by rainfall were similar to flow rate change in the river. Distribution of organic matter fraction according to change of rain duration revealed that while hydrophilic component increased at initial rainfall, the hydrophobic component was similar to change in dissolved organic carbon (DOC) concentration. Also, the relative proportion of hydrophilic components in organic matter in river water increased, due to rainfall. Results of biodegradation of organic matters revealed that decomposition rate of organic matters during rainfall was higher than that of during a non-rainfall event.