• Title/Summary/Keyword: Rainfall Frequency

Search Result 685, Processing Time 0.03 seconds

A Review of Observed Climate Change in Korean Peninsula (한반도 지역 관측 기후변화 고찰)

  • Ho, Chang-Hoi;Lee, Min-Hee;Park, Tae-Won;Lee, Seungmin
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.221-235
    • /
    • 2011
  • This study summarizes previous studies on the climate change over Korea. Several studies on climate change in the neighboring countries as well as the entire globe are reviewed. Temperature data obtained from modern observational system show an increasing trend beyond the natural variations. The increasing rate of sea surface temperature (SST) over the ocean basins surrounding Korea is higher than that of the global-mean SST. The large increase in the SST over the oceans surrounding Korea may enhance tropical cyclone activity and heavy rainfall frequency in Korea. In addition, it has been reported that the changes in large scale circulation associated with global climate change influence the spatio-temporal variation of monsoon including Changma in summer and cold surges in winter. Although all researches on the subject were not fully discussed in this study due to short period of preparation, allowed pages, and authors' limited knowledge, we expect that this summarized reviews would be helpful to understand climate changes over Korea and the surrounding regions.

Assessment of Climate Change Impact on Flow Regime and Physical Habitat for Fish (기후변화가 하천 유황과 어류 물리서식처에 미치는 영향 평가)

  • Hong, Il;Kim, Ji Sung;Kim, Kyu Ho;Jeon, Ho Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • Due to the recent climate change realization (timing, rainfall pattern changes), the flow regime is changing according to the watershed. The long-term change of flow regime is causing a significant change in structure and function of aquatic ecosystems. However, there is no analysis from the viewpoint of the aquatic ecosystem including flow rate alteration and ecological characteristics as well as the climate change connection in Korea yet. Therefore, We quantitatively assessed the impact of present-future flow regime alteration due to climate change on the Pseudopungtungia nigra habitat in the Mankyung river and floodplain area. As a result, it was confirmed that extreme hydrological conditions such as flood and drought are intensified in the future than the present. Especially, the changes of flow regime characteristics were clarified by comparing and analyzing the magnitude, frequency, duration, rate of change, and by linking flow regime characteristics with physical habitat analysis, it could be suggested that climate change would significantly increase the risk of future ecological changes.

Hydrological observation system deployment for water Water quantity, quality management (수자원 수량, 수질관리를 위한 수문관측시스템 구축방안)

  • Yu, Se-hwan;Jang, Dong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.882-885
    • /
    • 2014
  • The duration and frequency of flooding and not last long, by the time climate change drought. The increased accordingly by reducing stream flow and year variation. This trend is expected to continue, and change towards a comprehensive analysis of such quantity, quality and management of water resources are managed. Flood warning system is called to perform them electronically to the management of water resources such as these to be in the organic water-related basic data acquisition, storage, processing and utilization. Can be divided into hydrological observations and flood warning systems alert system broadcast system. Hydrological observation system is the measurement from the hydrological stations (water level, rainfall, water) that can be observed hydrological status of the dam basin hydrological observation data transmitted to the central office, located at the dam monitoring and control system through a variety of networks including satellite, and the collected defined as the system that sent the K-water head office in 1 minute increments hydrological observation data. Headquartered in support of this decision. Dimensions of the dam are provided in addition to inward. Channeled through various hydrologic analysis and leveraging the data transfer. This paper looks at ways to build out hydrological observation system.

  • PDF

Implementation of Ka-band Satellite Broadcasting/LNB with High Dynamic Range (Ka-band 고감도 위성방송용/LNB 최적화 설계)

  • Mok, Gwang-Yun;Lee, Kyung-Bo;Rhee, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.66-69
    • /
    • 2016
  • In this paper, we suggests a Ka-band LNB considering next-generation UHD satellite TVRO. Since Ka-band has grater attenuation than Ku-band in atmosphere, we designed the low-noise down-converter to improve receiving sensitivity and to extend a dynamic range of receiver. It aims to compensate a quality of ultra high definition transmission signal for rainfall. The low-noise block diagram consists of a three-staged amplifier (LNA), band-pass filter for deleting image (BPF), mixer and IF when considering nonlinear characteristics in the receiver RF front end module. Also, we showed a LNB through optimization processes affecting dynamic range directly in receiver FEM. Asa resuly of experiment, the gain of low-noise down-converter show between 58.5dB and 60.7dB, the noise figure has a high characteristic as 1.38dB. Finally, the phase noise of local oscillator is -63.10dBc at 100MHz offset frequency.

  • PDF

Implementation of CNN-based classification model for flood risk determination (홍수 위험도 판별을 위한 CNN 기반의 분류 모델 구현)

  • Cho, Minwoo;Kim, Dongsoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.341-346
    • /
    • 2022
  • Due to global warming and abnormal climate, the frequency and damage of floods are increasing, and the number of people exposed to flood-prone areas has increased by 25% compared to 2000. Floods cause huge financial and human losses, and in order to reduce the losses caused by floods, it is necessary to predict the flood in advance and decide to evacuate quickly. This paper proposes a flood risk determination model using a CNN-based classification model so that timely evacuation decisions can be made using rainfall and water level data, which are key data for flood prediction. By comparing the results of the CNN-based classification model proposed in this paper and the DNN-based classification model, it was confirmed that it showed better performance. Through this, it is considered that it can be used as an initial study to determine the risk of flooding, determine whether to evacuate, and make an evacuation decision at the optimal time.

Strength and Durability Test of Rapid Hardening Composite Mat for Protect Railway Slope in Operation (운영중인 철도비탈면 보호를 위한 초속경 복합매트의 강도 및 내구성 실험)

  • Hyun-Sang, Yoo;Tae-Hee, Kang;Hyuk-Sang, Jung;In-Chul, Back
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.79-91
    • /
    • 2022
  • Recently, the frequency of damage to slopes for highways, railways, and complexes has been increasing according to abnormal climates such as heavy rainfall or snowfall. Rapid Hardening Composite Mat (RHCM) could be a satisfactory alternative because it has the advantages that large-scale earthwork is not essential and the period for restoration is minimized. Also, this method does not require heavy machines and a phase of maintenance for slopes against the shotcrete method or planted slope protection, which are representative slope protection methods. Furthermore, the curing time is shorter than Geosynthetic Concrete Composite Mat (GCCM). Therefore, RHCM could be useful for emergency restoration work. Thus, in this study, the strength and duration of RHCM are estimated, compared, and analyzed with GCCM. As a result of the laboratory test, the strength of RHCM is greater 51%, and the duration is larger 69% than GCCM.

Evaluation of Gapfilling Method of Missing Soil Moisture Values during Rainfall Period - Gapfilling Method Based on Culmulative Distribution Function (강우기간의 토양수분량 결측값 보간방법 평가 - 누적분포함수를 이용한 결측 보간)

  • Yong Jun Lee;Ki young Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.299-299
    • /
    • 2023
  • 토양수분(soil moisture)은 수문인자의 하나로서 토양 내에 함유된 물의 양을 의미하며, 그 총량은 미미하지만 대기와 지표면 사이에서 일어나는 복잡한 물순환과 에너지 교환을 이해하는데 있어 필수적이다. 현재 국내에서는 「수자원의 조사·계획 및 관리에 관한 법률」(이하 수자원법)에 근거해 토양수분량 관측이 이루어지고 있으며, 수자원 분야의 한국수자원조사기술원 외에도 농업, 임업 분야에서도 다양한 기관에서 지상관측소를 구축해 토양수분량을 측정하고 있다. 국내 지상관측소에서는 주로 지점규모(point scale)로 토양수분량을 관측하는 장비가 사용되고 있으며, 유전율식 장비인 TDR(Time Domain Reflectometry), FDR(Frequency Domain Reflectometry)이나 토양수분장력을 측정하는 장력계(Tensiometer)가 널리 쓰이고 있다. 수자원분야에서는 토양 내 수분의 양을 직관적으로 확인할 수 있는 유전율식 장비가 대중적으로 사용되고 있으며, 최근에는 우주선(Cosmic-Ray)으로부터 발생하는 고속중성자(Fast Neutron)를 통해 중규모 면단위(field scale) 토양수분량을 관측하는 장비인 CRNP(Cosmic-Ray Neutron Probe)에 대한 연구도 활발히 진행되고 있다. 이러한 장비는 주로 야외에 설치해 운영하고 있기 때문에 장비 훼손이나 전원공급의 어려움으로 결측이나 오측이 발생할 수 있다. 토양수분량 시계열자료의 결측이나 오측이 일반적인 감쇄기에 발생했다면 선형보간법으로도 간단히 보간할 수 있지만, 강우에 의한 상승기에 발생했다면 해당 강우사상에서의 토양수분량의 상한치를 알기 어려워 결측보간에 어려움이 있다. 본 연구에서는 토양수분량 시계열자료의 강우기간 결측을 보간하는 방법으로 누적분포함수 역변환 샘플링방법을 선택하였다. 연구에는 음성군(차곡리) 토양수분량 관측소 2021년 자료가 사용되었으며, 관측소 56개 지점 중 임의의 지점에 결측구간을 생성한 뒤 해당 지점과의 상관계수가 높은 지점의 누적분포함수를 이용해 역변환 샘플링 방식으로 임의 지점의 결측을 보간하고 그 결과를 기존값과 비교해 보간 방법의 정확도를 평가하였다.

  • PDF

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF

Evaluation of Rice Nitrogen Utilization Efficiency under High Temperature and High Carbon Dioxide Conditions

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.168-168
    • /
    • 2022
  • According to the 5th Climate Change Report, global average temperature in 2081~2100 will increase 1.8℃ based on RCP 4.5 and 3.7℃ based on RCP 8.5 from the current climate value (IPCC Working Group I AR5). As temperature is expected to increase due to global warming and the intensity and frequency of rainfall are expected to increase, damage to crops is expected, and countermeasures must be taken. This study intends to evaluate rice growth in terms of nitrogen utilization efficiency according to future climate change conditions. In this experiment, Oryza sativa cv. Shindongjin were planted at the SPAR facility of the NICS in Wanju-gun, Jeollabuk-do on June 10, and were planted and grown according to the standard cultivation method. Cultivation conditions are high temperature, high CO2 (current temperature+4.7℃·CO2 800ppm), high temperature (current temperature+4.7℃·CO2 400ppm), current climate (current tempreture·CO2 400 ppm). Nitrogen was varied as 0, 9, 18 kg/10a. The N content and C/N ratio of all rice leaves, stems, and seeds increased at high temperature, and the N content and C/N ratio decreased under high temperature and high CO2 conditions com pared to high temperature. Compared to the current climate, NUE increases by about 8% under high temperature and high CO2 conditions and by about 2% under high temperature conditions. This seems to be because the increase in temperature and CO2 induced the increase in biomass. ANUE related to yield decreased by about 70% compared to the current climate under high temperature conditions, and decreased by about 45% at high temperature and high CO2, showing a tendency to decrease compared to high temperature. This appears to be due to reduced fertility and poor ripening due to high temperature stress. However, as the nitrogen increased, the number of ears and the number of grains increased, slightly offsetting the production reduction factor.

  • PDF

Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios (SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망)

  • Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Hong, Eun-Mi;Oh, Chansung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.