• Title/Summary/Keyword: Rainfall Days

Search Result 480, Processing Time 0.027 seconds

Australia's Water Management Policies and Implications in Response to Climate Change (기후변화에 대응한 호주의 물관리 정책과 시사점)

  • Lee, Jong Wook;Park, Tae Sun;Lee, Seung Yeon;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.1-12
    • /
    • 2020
  • Recently, as the extreme drought continued due to the reckless development and the dramatical climate change, national concern about the water management issues has been increased rapidly around the world, especially in Korea. Meanwhile, it is necessary to analyze and review the related cases in Australia, where they have developed the consistently, eco-friendly and systematically management from the national level, which is similar to that of Korea in difficult circumstances. Australia has been suffered by repeated droughts and floods due to low rainfall and dryness, and water disputes were begun with immigrant settlement in the 1890s. In the early days, water management agreements for efficient distribution of water resources, water use regulation programs, and federal water laws were enacted, and now the established water management system in which development and conservation are assumed to be well balanced. In Korea, however, in the past, the Ministry of Environment was responsible for water quality issues while the quantity was managed by the Ministry of Land, Infrastructure and Transport, and the main local departments for water management were divided. Therefore, it was difficult to manage the integrated water management due to problems such as duplicated works, excessive investments, and inefficiency. To resolve this situation, in 2018, all water management functions were unified, such as enacting the fundamental water-related laws, thereby laying the foundation for the integrated water management system for each basin. From 2019, even the integrated water management system was implemented, we are promoting the effect of sustainable water resource management. In order to establish a management policy for efficient and eco-friendly water management, the IWRM (Integrated Water Resource Management) of Australia, which has been devised in various ways, was analyzed and compared with the present situations and cases occurred in Korea, and the implications from this study would be suggested the future of IWRM in Korea.

Development of Artificial Intelligence Model for Predicting Citrus Sugar Content based on Meteorological Data (기상 데이터 기반 감귤 당도 예측 인공지능 모델 개발)

  • Seo, Dongmin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2021
  • Citrus quality is generally determined by its sugar content and acidity. In particular, sugar content is a very important factor because it determines the taste of citrus. Currently, the most commonly used method of measuring citrus sugar content in farms is a portable juiced sugar meter and a non-destructive sugar meter. This method can be easily measured by individuals, but the accuracy of the sugar content is inferior to that of the citrus NongHyup official machine. In particular, there is an error difference of 0.5 Brix or more, which is still insufficient for use in the field. Therefore, in this paper, we propose an AI model that predicts the citrus sugar content of unmeasured days within the error range of 0.5 Brix or less based on the previously collected citrus sugar content and meteorological data (average temperature, humidity, rainfall, solar radiation, and average wind speed). In addition, it was confirmed that the prediction model proposed through performance evaluation had an mean absolute error of 0.1154 for Seongsan area and 0.1983 for the Hawon area in Jeju Island. Lastly, the proposed model supports an error difference of less than 0.5 Brix and is a technology that supports predictive measurement, so it is expected that its usability will be highly progressive.

Effect of Void Formation on Strength of Cemented Material (고결 지반 내에 형성된 공극이 강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.109-117
    • /
    • 2010
  • Gas hydrate dissociation can generate large amounts of gas and water in gas hydrate bearing sediments, which may eventually escape from a soil skeleton and form voids within the sediments. The loss of fine particles between coarse particles or collapse of cementation due to water flow during heavy or continuous rainfall may form large voids within soil structure. In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Glass beads with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Glass beads were mixed with 2% cement ratio and 7% water content and then compacted into a cylindrical sample with five equal layers. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle, and embedded into the middle of five equal layers. The number, direction, and length of capsules embedded into each layer vary. After two days curing, a series of unconfined compression tests is performed on the capsule-embedded cemented glass beads. Unconfined compressive strength of cemented glass beads with capsules depends on the volume, direction and length of capsules. The volume and cross section formed by voids are most important factors in strength. An unconfined compressive strength of a specimen with large voids decreases up to 35% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments in the long term after dissociation and loss of fine particles within soil structure.

The study of Application of Drought Index Using Measured Soil Moisture at KoFlux Tower (KoFlux 타워에서 관측된 토양수분 값을 이용한 가뭄지수 활용에 관한 연구)

  • Kim, Sooyoung;Jo, Hwan Bum;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.541-549
    • /
    • 2010
  • While the number of rainy days is decreasing, the mean annual precipitation is increasing due to abnormal climate changes caused by the global warming in Korea. Owing to the biased-concentration of rainfall during specific short terms, not only flood but also drought becomes more and more serious. From the literature, it is easily found that previous studies about flood have been intensively conducted. However, previous studies about drought have been performed rarely. This study conducted the comparison between two representative drought indexes calculated from soil moisture and precipitation. Study area was Haenam-gun, Jeollanam-do in Korea. Soil Moisture Index(SMI) was calculated from soil moisture data while the Standardized Precipitation Index(SPI) and the Palmer Drought Severity Index(PDSI) were calculated from meteorological data. All monthly data utilized in this study were observed at the KoFlux Tower. After the comparative analysis, three indexes showed similar tendency. Therefore, it is thought that the drought index using soil moisture measured at the KoFlux Tower is reasonable, which is because the soil moisture is immediately affected by all the meteorological factors.

Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting (다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안)

  • Hyeseung Park;Jongwook Yoon;Hojun Lee;Hyunho Yang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.199-207
    • /
    • 2024
  • Local reservoirs are crucial sources for agricultural water supply, necessitating stable water level management to prepare for extreme climate conditions such as droughts. Water level prediction is significantly influenced by local climate characteristics, such as localized rainfall, as well as seasonal factors including cropping times, making it essential to understand the correlation between input and output data as much as selecting an appropriate prediction model. In this study, extensive multivariate data from over 400 reservoirs in Jeollabuk-do from 1991 to 2022 was utilized to train and validate a water level prediction model that comprehensively reflects the complex hydrological and climatological environmental factors of each reservoir, and to analyze the impact of each input feature on the prediction performance of water levels. Instead of focusing on improvements in water level performance through neural network structures, the study adopts a basic Feedforward Neural Network composed of fully connected layers, batch normalization, dropout, and activation functions, focusing on the correlation between multivariate input data and prediction performance. Additionally, most existing studies only present short-term prediction performance on a daily basis, which is not suitable for practical environments that require medium to long-term predictions, such as 10 days or a month. Therefore, this study measured the water level prediction performance up to one month ahead through a recursive method that uses daily prediction values as the next input. The experiment identified performance changes according to the prediction period and analyzed the impact of each input feature on the overall performance based on an Ablation study.

A study on the feasibility analysis of the current flood season: a case study of the Yongdam Dam (현행 법정홍수기 타당성 검토 및 개선에 관한 연구: 용담댐 사례)

  • Lee, Jae Hwang;Kim, Gi Joo;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.359-369
    • /
    • 2024
  • Korea prepares for potential floods by designating June 21st to September 20th as the flood season. However, many dams in Korea have suffered from extreme floods caused by different climate patterns, as in the case of the longest consecutive rain of 54 days in the 2020's flood season. In this context, various studies have tried to develop novel methodologies to reduce flood damage, but no study has ever dealt with the validity of the current statutory flood season thus far. This study first checked the validity of the current flood season through the observation data in the 21st century and proved that the current flood season does not consider the effects of increasing precipitation trends and the changing regional rainfall characteristics. In order to deal with these limitations, this study suggested seven new alternative flood seasons in the research area. The rigid reservoir operation method (ROM) was used for reservoir simulation, and the long short-term memory (LSTM) model was used to derive predicted inflow. Finally, all alternatives were evaluated based on whether if they exceeded the design discharge of the dam and the design flood of the river. As a result, the floods in the shifted period were reduced by 0.068% and 0.33% in terms of frequency and duration, and the magnitude also decreased by 24.6%, respectively. During this period, the second evaluation method also demonstrated that flood decreased from four to two occurrences. As the result of this study, the authors expect a formal reassessment of the flood season to take place, which will ultimately lead to the preemptive flood response to changing precipitation patterns.

Combined analysis of meteorological and hydrological drought for hydrological drought prediction and early response - Focussing on the 2022-23 drought in the Jeollanam-do - (수문학적 가뭄 예측과 조기대응을 위한 기상-수문학적 가뭄의 연계분석 - 2022~23 전남지역 가뭄을 대상으로)

  • Jeong, Minsu;Hong, Seok-Jae;Kim, Young-Jun;Yoon, Hyeon-Cheol;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.195-207
    • /
    • 2024
  • This study selected major drought events that occurred in the Jeonnam region from 1991 to 2023, examining both meteorological and hydrological drought occurrence mechanisms. The daily drought index was calculated using rainfall and dam storage as input data, and the drought propagation characteristics from meteorological drought to hydrological drought were analyzed. The characteristics of the 2022-23 drought, which recently occurred in the Jeonnam region and caused serious damage, were evaluated. Compared to historical droughts, the duration of the hydrological drought for 2022-2023 lasted 334 days, the second longest after 2017-2018, the drought severity was evaluated as the most severe at -1.76. As a result of a linked analysis of SPI (StandQardized Precipitation Index), and SRSI (Standardized Reservoir Storage Index), it is possible to suggest a proactive utilization for SPI(6) to respond to hydrological drought. Furthermore, by confirming the similarity between SRSI and SPI(12) in long-term drought monitoring, the applicability of SPI(12) to hydrological drought monitoring in ungauged basins was also confirmed. Through this study, it was confirmed that the long-term dryness that occurs during the summer rainy season can transition into a serious level of hydrological drought. Therefore, for preemptive drought response, it is necessary to use real-time monitoring results of various drought indices and understand the propagation phenomenon from meteorological-agricultural-hydrological drought to secure a sufficient drought response period.

Research on the Methods and Proper Provisions for Rotational Irrigation (윤환관개방법과 적정시설 연구)

  • 유한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2191-2205
    • /
    • 1971
  • In this research, Nong-rim No. 6 was adopted as a test variety of rice. Rice seedlings were transplanted on June 14, 1970. Roots were settled into soil on June 20 and a total number of days irrigated of $21cm{\times}21cm$ and an area of $9.9m^2$ for a test plot were accepted, planting 70 stumps of rice in a test plot. The soil in test plots are classified by soil test as oam, and its chemical contents are as shown in Table 3. Irrigation water was secured by pumping from the Sudun stream that originates at the Suho reservoir. Accordingly, the qualities of irrigation. water are considered to be the same as those of water stored in the Suho reservoir. There were 54 days of intermittent rainfalls in total during the whole 110-day period of irrigation. As a result, it is likely that the growth of rice plants was influenced by rainfall at a comparatively great degree. In order to measure the amounts of water consumption, infiltrometers, measuring devices for the decreases of water depths and lycimeters were provided. As a result of measurements, an average daily rate of infiltration was observed to be 14mm/day. It is expected from this research that the effect of increased yield will be secured by supplying optimum amounts of water for irrigation on proper times, and that the amounts of water consumption for irrigation can be saved by applying suitable irrigation methods. The test results obtained are summarized as follows: 1. Yields produced in the test plots of continuous irrigation are lower than those in the test plots of rotational irrigation, i.e., yields produced at the test plots irrigatied once in a period of 8 days are higher by 27% in average than those produced at test plots of continuous irrigation. 2. The amounts of irrigation water for test plots, which have a clay layer of 9cm in thickness and vynil diaphragm without holes, are saved by about 52% in comparison with ordinary test plots. 3. Ears are sprouted 5 days earlier at continuous irrigation plots as compared with other test plots. 4. It seems that there are growing stages of rice plants such as those of forming and sprouting of ears, in which the amounts of irrigation water are consumed more in comparison with the other stages. Therefore, it may be possible to increase of decrease the amount of irrigation water, according to the growing stage of rice plant, so as to save irrigation water.

  • PDF

Impacts of Urban High Temperature Events on Physiology of Apple Trees: A Case Study of 'Fuji'/M.9 Apple Trees in Daegu, Korea (도심지역 고온현상이 사과나무 생육과정에 미치는 영향: 대구광역시 '후지'/M.9을 사례로)

  • Sagong, Dong-Hoon;Kweon, Hun-Joong;Park, Moo-Yong;Song, Yang-Yik;Ryu, Su-Hyun;Kim, Mok-Jong;Choi, Kyung-Hee;Yoon, Tae-Myung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.130-144
    • /
    • 2013
  • In this study, we examined the effect of high temperature of urban area on the physiological response of apple tree including the photosynthesis, shoot growth, and fruit quality of 'Fuji'/M.9 apple trees planted at Daegu urban area (DUA) and Gunwi rural area (GRA) for 2 years (2009-2010). During the apple growing season (April-October), the average air temperature of DUA was about $3.0^{\circ}C$ higher than that of GRA and the total rainfall of DUA was 130 mm more than that of GRA. During fruit enlargement stage (June-August), the number of days that recorded daily mean temperature of over $30^{\circ}C$ were ten on DUA in 2010, but there was no day when such temperature was experienced in 2009. Average air temperature of DUA during the maturation stage (September-October) was $19.8^{\circ}C$, which was $4.0^{\circ}C$ higher than that of GRA. The higher temperature of over $30^{\circ}C$ during fruit enlargement stage decreased the photosynthetic rate, shoot growth, fruit weight, and soluble solid content of 'Fuji'/M.9 apple tree. The moderate temperature of about $20^{\circ}C$ during maturation stage increased the photosynthetic rate and soluble solid content of 'Fuji'/M.9 apple tree, but decreased fruit red color. In regional comparison with GRA, photosynthetic rate of DUA was changed from lower before rainy season to higher after rainy season. Fruit weight was higher in DUA than that of GRA. However, fruit weight between DUA and GRA did not show the difference when accumulated days that recorded daily maximum temperature over $35^{\circ}C$ of DUA was increased. Compared to the GRA, soluble solid content of DUA was higher, but fruit red color of DUA was less. These results indicate that the poor red coloring is the most problematic in 'Fuji'/M.9 apple tree by global warming and urbanization.

Comparison of Growth Period and Local Climate for 'Hongro' Apple Orchards Located at Different Altitudes in Jangsu-Gun (장수군의 해발고도별 '홍로' 사과원의 미기상 및 생육기 비교)

  • Song, Ju-Hee;Seo, Byung Sun;Choi, Dong Geun;Choi, In Myung;Kang, In-Kyu;Guak, Sunghee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study was conducted to compare the local climate conditions and growth periods for the apple (Malus domestica 'Borkh') orchards at different altitudes (330, 500, and 670 m) in Jangsu-Gun, Korea. Observation data for the growth period show that the monthly mean air temperatures at the 'Hongro' apple orchard sites decrease with height at the rate of 1.0 to $3.0^{\circ}C$/100 m. The monthly minimum temperatures in April (blooming period for 'Hongro' apple) were 4.3, 2.9, and $0.4^{\circ}C$ at 330, 500, and 670 m, respectively. The monthly mean temperatures in September (i.e., the coloration and maturation period) were 20.6, 18.7, and $14.5^{\circ}C$, respectively. The annual precipitation range varied from 1,234 to 1,439 mm, which tended to increase with height. The heavy rainfall occurred in summer (June to August) and amounted to 827-933 mm. No significant differences in the duration of sunshine were observed amongst the orchards at three different altitudes. The earliest bud break was observed at the 330 m altitude (18 March 2009), which was 4 and 11 days earlier in comparison to those at 500 and 670 m, respectively. The time of full bloom at 330 m was 12 days ahead of that at 670 m. The optimal maturation of fruit (based on skin redness > 80%) was observed between 7 and 10 September at 330 m, 15 and 18 September at 500 m, and 21 and 23 September at 670 m.