• Title/Summary/Keyword: Rainfall Days

Search Result 481, Processing Time 0.026 seconds

Comparison of Fecal Microbes' Survival in Soil between Compost Surface Application and Soil Incorporation (지표와 지중 퇴비 시비에 따른 토양에서의 분변성 미생물 생존성 비교)

  • Jun, Sang Min;Song, Inhong;Kim, Kyeung;Hwang, Soon Ho;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study was to compare fecal microbes survival in soil between compost surface application and soil incorporation. The survival experiment was conducted in six styrofoam beds ($510{\times}325{\times}305(mm)$ in size) filled with sandy loam soil. A half of six boxes were received by compost surface application, while the other half were treated with compost-soil mixture. Duplicated surface and surbsurface soil (20 cm depth) samples were collected at various interval up to 50 days and analyzed for the determination of fecal coliforms and E. coli numbers. As expected, surface applied beds demonstrated two to three magnitudes order greater in both the study microorganisms as compared to soil incorporated beds. Microbial inactivation rate of soil surface was twice as great as subsurface soil condition probably due to exposure to sun light and environmental conditions including moisture loss. When rainfall occurred, microbes on the surface were transported into soil along with water movement. It was concluded that surface compost application may be easier to apply but pose higher risk of human exposure to microbes. Winter compost application may be favorable in alleviating health risk by giving some time for inactivation compared to spring application.

Influence of Climate Factors on the Occurrence of Pathogenic Escherichia coli Food Poisoning in Korea (우리나라에서 병원성 대장균 식중독 발생과 기후요소의 영향)

  • Kim, Jong-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.3
    • /
    • pp.353-358
    • /
    • 2020
  • Objectives: An outbreak of pathogenic Escherichia coli food poisoning in Korea was first reported in 1998. They have continued to occure since then. This study was performed to describe the long-term trend in pathogenic E. coli food poisoning occurrences in Korea and examine the relation with climate factors. Methods: Official Korean statistics on food poisoning outbreaks and meteorological data for the period 2002-2017 were used. Pearson's correlation analysis was employed to establish the relationship between outbreaks of pathogenic E. coli food poisoning and meteorological factors. The influence of meteorological factors upon the outbreaks was analyzed by regression analysis. Results: During the study period, pathogenic E. coli food poisoning ranked second for the number of outbreaks (excluding unknowns) and first for the number of cases. Average temperature, the highest and lowest temperatures, precipitation, number of days with rainfall, and humidity all had a significant correlation with monthly number of outbreaks of pathogenic E. coli food poisoning (p<0.001). It was found that the lowest and highest temperatures and precipitation had a significant influence on the monthly number of outbreaks of food poisoning (p<0.001). These variables together explained 42.1% of the total variance, with the lowest temperature having the greatest explanatory power. Conclusion: These results show that food poisoning incidences may have been influenced by climate change, especially warming. The results also suggest that pathogenic E. coli infections are now an important public health issue in Korea since it is one of the countries where climate change is occurring rapidly.

Development and Application of Paddy Storage Estimation Model During Storm Periods (홍수기 논의 저류량 산정모형 개발 및 적용)

  • Kim, Seong-Joon;Kim, Sun-Joo;Yoon, Chun-Gyeong;Kwon, Hyung-Joong;Park, Geun-Ae
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.901-910
    • /
    • 2003
  • The hydrologic behavior of paddy field depends largely on the irrigation and levee height management by farmers. The storage and drainage amount of paddy for storm events certainly influences the stream discharge. To understand the paddy storage effect during storm periods, a daily paddy water balance model embedding farmer's water management was developed by using 4 years (1996, 1997, 2001, 2002) field experimental data at 2 locations (Suwon and Yeoju) From the modeling, it was possible to simulate the daily ponding depth of paddy by treating paddy levee height and threshold pending depth indicating irrigation time as 10 days average parameters of the model. The storage amount(306.9 mm to 343.6 mm) showed little deviation to rainfall amount(425.1 mm to 850.8 mm).

Ground Water Resources of Kum-Ho River Basin (금호강유역 지하수자원)

  • 한정상
    • Journal of the Korean Professional Engineers Association
    • /
    • v.10 no.2
    • /
    • pp.13-26
    • /
    • 1977
  • The Kum-Ho river basin is one of the densely populated area having more than 35% of the total population and it was also well irrigated since ealier days in the Nackdong River Basin Most of the easily developed source of surface water are fully utilized, and at this moment the basin is at the stage that no more surface water can be made available under the present rapid development of economic condition. Since surface water supplies from the basin have become more difficult to obtain, the ground water resources must be thoroughly investigated and utilized greatly hereafter. In economic ground of the basin what part could ground water play\ulcorner In what quantities and, for what uses could it be put\ulcorner The answer to these questions can be relatively simple; the ground water resources in the basin can be put at almost any desired use and almost anywhere in the basin. The area of the basin is at about 2088km$^2$ in the middle part of Nackdong River Basin and it is located along the Seoul-Pusan Express Highway. The mean annual rainfall is about 974.7m/m, most of which falls from June to September during the monsoon. Accumulated wet period is appeared approximately after every 8 year's accumulated dry-period with the duration of 5 years. The water bearing formations in the basin include unconsolidated alluvial deposits in Age of Quatenary, saprolite derived from weathered crystalline rocks, Kyongsang sedimentary formations of the period from late Jurassic to Cretaceouse, and igneouse rocks ranging of the Age from Mesozoic to Cenozoic. The most productive ground water reservoir in the basin is calcareouse shale and sandstones of Kyongsan system, which occupies about 66% of the total area.

  • PDF

A study on the characteristics of wastewater flowrate in land-use of Sogwipo-city in Cheju (제주도 서귀포시지역의 용도지역별 하수발생량 특성에 관한 연구)

  • Jeong, Gwang Ok;Ryu, Seong Pil
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.251-262
    • /
    • 2004
  • To identify the characteristics of wastewater flow generated in treatment basins of Seogwipo-city, we selected 3 stations representing the basin and performed 7 times of field survey including 5 times in dry periods and 2 times in wet periods from Feb. 25 to May 27, 2002 for the selected stations. From the analysis of flow data measured for more than 60 days in the interval of 5 minutes and concentration data obtained from laboratory analysis, we can draw several conclusions. First, in the analysis of diurnal variation of wastewater flow for land-use types, we could find the following results: in the residential area, it is observed that wastewater flow rates rise early in the morning for the office-going hour and fall gradually and rise again after the office-leaving hour, showing typical residential wastewater flow pattern, while for the residential and commercial area flow rates rise early in the morning at the office-going hour and move up and down repeatedly within wide range and last till the office-leaving hour, which can be resulted from wastewater that is generated by tourists activated after early in the afternoon, while for the touristy area flow rates rise early in the morning and fall gradually and rise again within wide range. Second, in the analysis of temporal variation of wastewater flow for monthly, it can be observed that in the residential area, in the residential and commercial areas the flow rate of May is higher than that of Feb., March, while for the touristy area flow rate is without monthly because it reflects the movement of population, Third, in wet periods concentration of water-quality item such as SS, BOD, and COD_{cr}$ is high in the beginning of rainfall by first flush, and falls down gradually to reach the steady state, which is the level of wastewater in dry periods after the cease of storm water due to diluting effect resulting from additional runoff water through storm sewers.

Correlation between Paldang Reservoir Discharge and Causes of Algal Blooming (팔당호 방류량과 조류발생요인들의 상관성)

  • Yoo, Hosik;Lee, Byonghi;Rhee, Seung-Whee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.93-98
    • /
    • 2013
  • Main causes of algal bloom was studied in Paldang reservoir. Statistical approach was tried using meteorological and water quality data. Algae alert system showed that more than ten days were counted in a year, once it happened in Paldang reservoir. Alert dates increased in recent 5 years. Correlation coefficients between chlorophyll-a and other indexes did not showed strong relations resulting in coefficients less than 0.4. Among them, sunshine duration, BOD, and flow rate were appeared relatively main causes of algal blooming. Sunshine duration and BOD showed positive relation while flow rate did negative one, which is resonable for photosynthetic microorganisms. Water temperature and total phosphorus, which were presumed probable main causes before study, resulted in low correlation coefficients. Correlation coefficients between discharge flow and rainfall, water temperature showed positive relation due to seasonal effect.

Evaluation of Stored Rainwater Quality and Economic Efficiency at Yangdo Elementary Rainwater Harvesting System (양도 초등학교 빗물이용시설의 수질 및 경제성 평가)

  • Kim, Kiyoung;Park, Hyunju;Kim, Tschungil;Han, Mooyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.333-341
    • /
    • 2014
  • To supply substitution water, $2m^3$ of capacity of rainwater harvesting system is designed calculating rainfall, catchment area and LPCD and has a effects to 34.4% of substitution water supply and 237 days of service day. Rainwater of drinking water quality was judged to be suitable except for bacteria problem, however, groundwater is exceeded in nitrate nitrogen, the evaporation residue and also bacteria, which means that the rainwater is suitable for use as water supply. In addition, to consider cost-benefit ratio, economic analysis conducted. The result is that B/C ratio of RWHS (10 years) is 1.70. It means total benefit is bigger than cost. Except to social factor in this study, there are a variety of benefit such as flood or drought prevention, educational effects inspiring water conservation awareness.

Hydrographic Structure Along 131.5°W in the Eastern Tropical Pacific in July 2003

  • Chang, Kyung-Il;Hwang, Sang-Chul;Hong, Chang-Su
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.299-309
    • /
    • 2004
  • Conductivity-temperature-depth (CTD) data obtained along a meridional section in the eastern tropical Pacific in July 2003 have been analyzed to identify various water masses, and to examine the hydrographic structure and zonal geostrophic currents in the upper 1000 m. Water mass analysis shows the existence of subtropical and intermediate waters, characterized by layers of subsurface salinity maximum and minimum, originating from both hemispheres of the Pacific. Vertical section of temperature in the upper 200 m shows the typical trough-ridge structure associated with the zonal current system for most of the tropical Pacific. Water with the lowest salinity of less than 33.6 was found in the upper 30 m between $8.5^{\circ}N$ and $10.5^{\circ}N$ in a boundary zone between the North Equatorial Current and North Equatorial Countercurrent. Temporal changes in water properties observed at $10.5^{\circ}N$ over a period of 9 days suggest both the local rainfall and horizontal advection is responsible for the presence of the low-salinity water. Development of a barrier layer was also observed at $10.5^{\circ}N$. In the North Equatorial Current region a local upwelling was observed at $15^{\circ}N$, which brings high salinity and cooler subtropical water to the sea surface. A band of countercurrent occurs in the upwelling region between $13^{\circ}N$ and $15^{\circ}N$.

Effect of Flooding and Soil Salinity on the Growth of Yam (Dioscorea batatas) Transplanted by Seedling of Aerial Bulblet in Saemangeum Reclaimed Tidal Land

  • Sohn, Yong-Man;Song, Jae-Do;Jeon, Geon-Yeong;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • The effect of flooding and soil salinity on the growth of yam (Dioscorea batatas) were studied on the experimantal site temporally established in the south-eastern part of Saemangeum Reclaimed Tidal Land (near Gwanghwal myun, Gimjae-gun, Jellabukdo, Korea). Yam seedlings planted by using aerial bulblet as alternative of sliced tubers, were grown for 20-days and transplanted in black-vinyl mulched ridges (about 20 cm in height) at 70cm interval by $20{\times}60cm$ spacing in the $4^{th}$ of May, 2010. Soil salinity was maintained at lower than 1.2 ds $m^{-1}$ during the growing period and did not result to salt injury in all plants. However, flooding injury very seriously led to plant death and plant mortality rates at $67{\pm}21$ and $82{\pm}9%$ of yam plants in the compost and no compost treatment, respectively, died by heavy flooding during the rainy summer season. The main reasons of the flooding injury included the decreased rainfall acceptable capacity (RAC) after the rising of water table and a slowdown of water infiltration rate after the formation of an impermeable soil crust in the furrow bottom with continuous and heavy downpour during the rainy summer season. The effect of compost treatment was not statistically observed because of the severe spatial difference caused by wet injury, although yam tuber yield was higher at 30 kg $10^{-1}$ in the compost treatment than in the no-compost treatment at 20 kg $10^{-1}$. However, the size of tuber ranged at 1.23 to 1.60 cm in diameter and 3.7 to 5.0 cm in length in all both treatment, which means they are still reproducible for the next cropping season. Conclusively, proper counter-flooding measure and soil salinity control critically important for successful yam production in Saemangeum Reclaimed Tidal Land.

Stabilization of Solid Waste in Lysimeter by Air Injection Mode (공기주입 방식을 이용한 매립모형조내 폐기물 안정화)

  • Kim, Kyung;Park, Joon-Seok;Lee, Hwan;Lee, Cheol-Hyo;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • This study was conducted to evaluate air injection mode on stabilization of solid waste in lysimeter. For three lysimeters, one was maintained under anaerobic condition as control, and air was injected into two lysimeters in continuous mode (atmospheric pressure) and intermittent mode (high pressure of 2 bar). Distilled water was sprayed over solid waste in 1.4 l/$m^3$(solid waste)/day, supposing rainfall intensity of 1,200 mm/yr and 30% infiltration. Oxygen in landfill gas was not detected in control lysimeter during operational days. After 30 day-aeration, oxygen concentrations of continuous and intermittent modes were maintained in 14% and 6%, respectively. $COD_{Cr}$ removal efficiencies of continuous and intermittent modes were about 70% and 50%, and BOD5 removal efficiencies were about 80% and 20%, respectively. In view of oxygen supply, and $COD_{Cr}$ and $BOD_5$ removal, continuous air injection mode of atmospheric pressure was more effective than intermittent mode of 2 bar. Settling degree of solid waste in case of two air injection modes was 3 times higher than that of anaerobic condition as control. Considering the above results, it was thought that air injection (especially continuous atmospheric pressure) could improve degradation of solid waste and induce preliminary stabilization in landfill site.