• Title/Summary/Keyword: Rain water

Search Result 997, Processing Time 0.025 seconds

Application of Remote Sensing Techniques to Survey and Estimate the Standing-Stock of Floating Debris in the Upper Daecheong Lake (원격탐사 기법 적용을 통한 대청호 상류 유입 부유쓰레기 조사 및 현존량 추정 연구)

  • Youngmin Kim;Seon Woong Jang ;Heung-Min Kim;Tak-Young Kim;Suho Bak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.589-597
    • /
    • 2023
  • Floating debris in large quantities from land during heavy rainfall has adverse social, economic, and environmental impacts, but the monitoring system for the concentration area and amount is insufficient. In this study, we proposed an efficient monitoring method for floating debris entering the river during heavy rainfall in Daecheong Lake, the largest water supply source in the central region, and applied remote sensing techniques to estimate the standing-stock of floating debris. To investigate the status of floating debris in the upper of Daecheong Lake, we used a tracking buoy equipped with a low-orbit satellite communication terminal to identify the movement route and behavior characteristics, and used a drone to estimate the potential concentration area and standing-stock of floating debris. The location tracking buoys moved rapidly during the period when the cumulative rainfall for 3 days increased by more than 200 to 300 mm. In the case of Hotan Bridge, which showed the longest distance, it moved about 72.8 km for one day, and the maximum moving speed at this time was 5.71 km/h. As a result of calculating the standing-stock of floating debris using a drone after heavy rainfall, it was found to be 658.8 to 9,165.4 tons, with the largest amount occurring in the Seokhori area. In this study, we were able to identify the main concentrations of floating debris by using location-tracking buoys and drones. It is believed that remote sensing-based monitoring methods, which are more mobile and quicker than traditional monitoring methods, can contribute to reducing the cost of collecting and processing large amounts of floating debris that flows in during heavy rain periods in the future.

A Study on Changes in Habitat Enviroment of Wild Birds in Urban Rivers according to Climate Change - A Case Study of Tancheon Ecological and Landscape Conservation Area - (기후변화에 따른 도시하천의 야생조류 서식환경 변화 연구 - 탄천 생태·경관보전지역를 사례로 -)

  • Han, Jeong-Hyeon;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.79-95
    • /
    • 2024
  • The purpose of this study was to find the changes in the habitat of wild birds caused by climate change in urban rivers and protected areas that greatly require ecological functions. In the future, this study can be used as a management index to protect the urban river ecosystem and maintain the health of sustainable urban rivers, thereby ensuring biodiversity. The Tancheon Ecological and Landscape Conservation Area, selected as a target site, has been affected by climate change. The four seasons of Korea have a distinct temperate climate, but the average annual temperature in Seoul has risen by 2.4-2.8℃ over the last 40 years. Winter temperatures tended to gradually increase. Precipitation, which was concentrated from June to August, is now changing into localized torrential rain and a uniform precipitation pattern of several months. Climate change causes irregular and unforeseen features. Climate change has been shown to have various effects on urban river ecosystems. The decrease in the area of water surface and sedimentary land impacted river shape change and has led to large-scale terrestrialization. Plants showed disturbance, and the vegetation was simplified. The emergence of national climate change indicator species, the development of foreign herbaceous plants, the change of dry land native herbaceous species, and wet intelligence vegetation were developed. Wild birds appeared in the territory of winter-summer migratory. In addition, species change and the populations of migratory birds also occurred. It was judged that fluctuations in temperature and precipitation and non-predictive characteristics affect the hydrological environment, plant ecology, and wild birds connecting with the river ecosystem. The results of this study were to analyze how climate change affects the habitat of wild birds and to develop a management index for river ecological and landscape conservation areas where environmental and ecological functions in cities operate. This study can serve as a basic study at the level of ecosystem services to improve the health of urban rivers and create a foundation for biodiversity.

A Study on the Nonpoint Pollutant Loadings in Urban and Agricultural Areas (도시(都市)와 농촌(農村)에서의 비점원(非點源) 오염물(汚染物) 배출양상(排出樣相)에 관한 연구(硏究))

  • Lim, Bong Su;Lee, Byung Hyun;Choi, Eui So
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.45-53
    • /
    • 1984
  • This study was conducted to investigate characteristics of nonpoint pollutant discharges and concentrations in runoff from the urban and agricultural areas in Korea. The analytical parameters used for this study were COD, BOD and SS. This study was conducted during the period from May to August 1981. Nonpoint pollutant mass loadings from the urban area were influenced by the rainfall intensity and the duration of rainfall, and etc. The concentrations of pollutants in the first flush was higher as the discharges increased. It was, however, found that the concentrations of pollutants in the heavy storm runoff were decreased due to the dilution effect. When other rainfall followed a peak rainfall, the concentrations of pollutants were lower than expected, because the first flush conveyed the most of pollutants deposited on the combined sewers. However the concentrations were increased in proportion to the increased flow when a rainfall of higher intensity than the first flush was continued. Yearly area yield rates in kg/ha were estimated to be 690.5(489.9~1,328) of COD, 319.7(226.8~614.8) of BOD, and 831.2(589.7~1,598) of SS. Pollutant sources in agricultural area were of the domestic waste water, manure composting stack, and agricultural solid wastes and etc. In the paddy field, yearly area yield rates in kg/ha were estimated to be 623.4(21.7~114) of COD, 18.65(9.53~34.5) of BOD, and 91.9(46.3~171.8) of SS. In the crop land, however, yearly rates in kg/ha were estimated to be 91.9(46.3~171.8) of COD, 23.09(11.7~42.5) of BOD, and 23.09(11.4~43.4) of SS. Pollutant sources in the feedlot area were originating from the feces of cattle, the cleaning water, the wastes spilled from manure composting stack during rain. Yearly area yield rate in kg/ha was estimated to be 3.804(2,489~6,658) of COD, 2.047(464~2,900) of BOD, and 1.149 (729~1,442) of SS. Pollutant discharges in the forest area were resulted from the organic layer like leaves and others deposited on the surface. Yearly area yield rate in kg/ha was estimated to be 9.86(5.45~18.56) of COD, 3.48(1.67~7.54) of BOD, and 4.64(9.74~10.35) of SS.

  • PDF

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.

A bibliographic study on medical science ancient period (上古時代) and the era of the old-Korea (古朝鮮時代) (상고시대(上古時代)와 고조선시대(古朝鮮時代)의 의학(醫學)에 관(關)한 문헌적(文獻的) 고찰(考察))

  • Kwon, Hak Cheol;Park, Chan-Guk
    • Journal of Korean Medical classics
    • /
    • v.3
    • /
    • pp.218-247
    • /
    • 1989
  • As mentioned above, I got the next conclusion since I had considered the medical contents of the ancient period(上古時代) and the era of the old-Korea(古朝鮮時代) through several bibliographic records. 1. There were Pung-baeg(風伯), Uh-sa(雨師), Un-sa(雲師) that were the names of the governmental officials during the ancient period of Whan-ung(桓雄). Among them, Uh-sa specially managed the treatment for diseases. When we think of the significance of Pung(風)-which means the winds, Uh(雨)-which means the rain, Un(雲)-which means of clouds, we will find out that the human life will be affected by all kinds of phenomena of the nature. So I can infer that ancestries could prevent and treat diseases with adjusting them tn the changes in the weather. 2. There were five government officials(五事) in the ancient period of Whan-ung(桓雄上古時代). They are Uh-ga(牛加), Ma-ga(馬加), Ku-ga(狗加), Cheo-ga(猪加) and Yang-ga(羊加), and had charges of five important duties. Among them, Cheo-ga was set to a charge of treatment for diseases. So we can notice that there existed people who treated for diseases professionally. When we think of the meanings of Uh(牛)-which intends cows or bulls. Ma(馬)-which intends horses, Ku(狗)-which intends dogs, Cheo(猪)-which intends wild boars and Yang(羊)-which intends sheep, we can see that livestocks would be raised at that time, and they came to have more chances to digest meat. Since the digestion of meat became to be a burden on the stomach and the intestines, it might cause a lot of indigestive troubles. 3. When I compared Tan-gun Pal-ga(檀君八加) with the Oh-ga(五加) in the ancient period of Whan-ung(桓雄上古時代), I could tell that the community of Tan-gun's period is more advanced and specialized than one of Whan-ung's. When I think of the next sentence ; "The Prince Imperial, Bu-u(夫虞) become to be a Ro-ga(鷺加), who treat for diseases professionally.", I am sure that the treatment for diseases was more importment than any other things, because he was the third son of Tan-gun(檀君). 4. According to Tan-gun(檀君) mythology, Whan-ung(桓雄) came down from the heaven of the pure Yang(純陽) to the earth and then changed into a man who had had more Yang(陽) than Yin(陰). And a bear came up from the underground(or the cave) to the ground and then changed into a women who had had more Yin(陰) than Yang(陽). So both of them became to hold together. This story implicated that ancestors had taken a serious view of each of them, namely the ancestors didn't give the ascendance to the one side of them, and made much account of the mutual harmony. So I am sure that this fact coincided with the basic theories of oriental medical science. To refer to two proverbs of Tan-gun mythology that are "Ki-Sam-Chil-Il(忌三七日)" which means caring for twenty one days, and "Pul-Gyon-Il-Gwang-Baeg-Il(不見日光百日)" which means keeping indoors for one hundred days, I can tell you that "twenty-one-day" involves the principle of the birth of life, and "one-hundred-day" contains a preparatory period or the period of death to bear another life. 5. From the medical stuff, such as wormwood(艾), garlic(蒜), or wonder-working herbage(靈草), that had been written at the bibliographic papers of the ancient period(上古時代) and the era of the old-Korea(古朝鮮時代), I consider that many people might get a lot of women's diseases, indigestive troubles, and other diseases that were caused by the weakness, but with using various spices, such as the leaves of water pepper(蔘), they could prevent the occurrance of all kinds of diseases previously. So I regard this treatment as the medicine from food. 6. One of the sayings at Nae-gyong(內經) is that "The stone accupuncture(砭石) came from the orient." We can see both "wonder-wor-king wormwood(靈草)" and "dried wormwood(乾艾)" in the several bibliographic papers of the ancient history of the old-Korea(朝鮮上古史). From these records, I can be convinced that ancestors would utilize the acupuncture(針) and the moxa cautery(灸) to cure a patient of a disease. 7. Even though someone claimed that the book, "medical science and chemistry(醫學化學)" and "medical treatment(醫學大方)" had had been written during the ancient period of the old-Korea(上古朝鮮時代), such a fact can't have been ascertained historical evidence. But it has been handed down that there existed the original phonetic alphabet, such as the "Ka-Im-To alphabet(加臨土文字)" at that time. The terms about the diseases, which had been occurred at the community of the old-Korea(古朝鮮地域), were recorded fragmentarily at other records after that time. The origin of confucianism came from the race of the eastern barbarians, and Tae-Ho-Pok-Hi(太嗅伏義) and the king. Sun(舜) came from the eastern barbarians, too. The divination of tortoise shells at the country of Un(殷) is another from which was developed at the eastern barbarians' fortune-telling of animal bones. From these facts, I can infer that, by all means, they might record the medical knowledge which had been stored for thousands of years while contacting with china directly.

  • PDF

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF