• Title/Summary/Keyword: Rain Clutter

Search Result 12, Processing Time 0.028 seconds

Target Detection for Marine Radars Using a Data Matrix Bank Filter

  • Jang, Moon Kwang;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.151-157
    • /
    • 2013
  • Marine radars are affected by sea and rain clutters, which can make target discrimination difficult. The clutter standard deviation and improvement factor are applied using multiple parameters-moving speed of radar, antenna speed, angle, etc. When a radar signal is processed, a Data Matrix Bank (DMB) filter can be applied to remove sea clutters. This filter allows detection of a target, and since it is not affected by changes in adjacent clutters resulting from a multi- target signal, sea state clutters can be removed. In this paper, we study the level for clutter removal and the method for target detection. In addition, we design a signal processing algorithm for marine radars, analyze the performance of the DMB filter algorithm, and provide a DMB filter algorithm design. We also perform a DMB filter algorithm analysis and simulation, and then apply this to the DMB filter and cell-average constant false alarm rate design to show comparative results.

Analysis of Clutter Effects in a Weather Radar (기상 레이다에서의 클러터 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1641-1648
    • /
    • 2016
  • A weather radar estimates Doppler frequency and width of Doppler spectrum from the received weather signal which represents the return echoes from rain or dust particles in a corresponding area. These estimates are very important parameters since they are directly related to precipitation, wind velocity and degree of turbulence. Therefore, these estimated values should be highly reliable to obtain accurate weather information. However, the echoes of a weather radar include both the weather signal and the clutter which occurred from ground reflection or moving objects, etc. The existence of the clutter in the echoes may cause serious errors in the estimation of weather-related parameters. Therefore, in this paper, models are developed to represent the weather signal and the clutter for the purpose of analyzing estimation errors caused by the strong clutter echoes. Using these models, various return echoes according to the weather signal and clutter power are simulated to analyze the effects of the clutter.

Performance Analysis on Terrain-Adaptive Clutter Map Algorithm for Ground Clutter Rejection of Weather Radar (기상 레이다의 지형 클러터 제거를 위한 지형적응 클러터 맵 알고리듬 성능분석)

  • Kim, Hye-Ri;Jung, Jung-Soo;Kwag, Young-Kil;Kim, Ji-Won;Kim, Ji-Hyeon;Ko, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1292-1299
    • /
    • 2014
  • Weather radar systems can provide weather information of the ground, sea, and air in extensive spatial coverage in near real time. However, it becomes problematic when ground clutter signal exists around precipitation because strong signals of ground can cause a false precipitation report. A large percentage of land coverage of Korea consists of mountainous regions where ground clutter needs to be mitigated for more accurate prediction. Thus, it is considered necessary to introduce a new suitable ground clutter removal technique specifically adequate for Korea. In this paper, the C-Map(Clutter Map) method using raw radar signals is proposed for removing ground clutter using a terrain-adaptive clutter map. A clutter map is generated using raw radar signals(I/Q) of clear days, then it is subtracted from received radar signals in frequency domain. The proposed method is applied to the radar data acquired from Sobaeksan rain radar and the result shows that the clutter rejection ratio is about 91.17 %.

Improvement of Detection Performance of a Ground Radar in the Weather Clutter Using Radar-Received-Signal Analysis (레이다 수신 신호 분석을 이용한 기상 클러터 환경 내 지상 레이다 탐지성능 개선)

  • Oh, Hyun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 2019
  • Radar detection range is decreased with an increase in the noise levels and detection thresholds in adaptive CFAR of a radar signal processor to the weather clutter reflection signal in the rain. When a high-velocity plot is generated in weather clutter, what are detected are not targets but false plots. Detection opportunity is reduced by radar time resource consumption from additional confirmations regarding the false plots. In this paper, the received signals are saved using a radar-received signal storage device. Based on the analysis of the received signals from weather clutter, the influence of the rainfall reflection has been mitigated by front-end attenuation of the signal processor. The improvement in the detection performance is verified through received signal and simulation results.

Maritime radar display unit based on PC for safe ship navigation

  • Bae, Jin-Ho;Lee, Chong-Hyun;Hwang, Chang-Ku
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • A prototype radar display unit was implemented using inexpensive off-the-shelf components, including a nonlinear estimation algorithm for the target tracking in a clutter environment. Two custom designed boards; an analog signal processing board and a DSP board, can be plugged into an expansion slot of a personal computer (PC) to form a maritime radar display unit. Our system provided all the functionality specified in the International Maritime Organization (IMO) resolution A422(XI). The analog signal processing board was used for A/D conversion as well as rain and sea clutter suppression. The main functions of the DSP board were scan conversion and video overlay operations. A host PC was used to run the tracking algorithm of targets in clutter, using the discrete-time Bayes optimal (nonlinear, and non-Gaussian) estimation method, and the graphic user interface (GUI) software for Automatic Radar Plotting Aid (ARPA). The proposed tracking method recursively found the entire probability density function of the target position and velocity by converting into linear convolution operations.

Rainfall Estimation by X-band Marine Radar (X밴드 선박용 레이더를 이용한 강우 추정)

  • Kim, Kwang-Ho;Kwon, Byung-Hyuk;Kim, Min-Seong;Kim, Park-Sa;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.695-704
    • /
    • 2018
  • The rainfall cases were identified by rainfall estimation techniques which were developed by using X - band marine radar. A digital signal converter was used to convert the signal received from the marine radar into digital reflectivity information. The ground clutter signal was removed and the errors caused by beam attenuation and beam volume changes were corrected. The reflectivity showed a linear relationship with the rain gauge rainfall. Quantitative rainfall was estimated by converting the radar signal into an cartesian coordinate system. When the rainfall was recorded more than $5mm\;hr^{-1}$ at three automatic weather stations, the rain cell distribution on the marine radar was consistent with that of the weather radar operated by Korea meteorological Adminstration.

Analysis of Quality Control Technique Characteristics on Single Polarization Radar Data (단일편파 레이더자료 품질관리기술 특성 분석)

  • Park, Sora;Kim, Heon-Ae;Cha, Joo Wan;Park, Jong-Seo;Han, Hye-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.77-87
    • /
    • 2014
  • The radar reflectivity is significantly affected by ground clutter, beam blockage, anomalous propagation (AP), birds, insects, chaff, etc. The quality of radar reflectivity is very important in quantitative precipitation estimation. Therefore, Weather Radar Center (WRC) of Korea Meteorological Administration (KMA) employed two quality control algorithms: 1) Open Radar Product Generator (ORPG) and 2) fuzzy quality control algorithm to improve quality of radar reflectivity. In this study, an occurrence of AP echoes and the performance of both quality control algorithms are investigated. Consequently, AP echoes frequently occur during the spring and fall seasons. Moreover, while the ORPG QC algorithm has the merit of removing non-precipitation echoes, such as AP echoes, it also removes weak rain echoes and snow echoes. In contrast, the fuzzy QC algorithm has the advantage of preserving snow echoes and weak rain echoes, but it eliminates the partial area of the contaminated echo, including the AP echoes.

A Skewed Doppler Spectrum Model in a Weather Radar (기상레이다에서의 비대칭 도플러 모델)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.853-856
    • /
    • 2007
  • A weather radar extracts the weather information from the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. The acquisition of accurate weather information depends on the operation environment which include the Doppler weather signal and ground clutter characteristics. Since the conventional symmetric weather Doppler model does not represent the measurements in real situations, the improved model is suggested to describe the skewness in the Doppler spectrum model. Using the suggested model, many various weather signals can be simulated to verify the accuracy of signal processing algorithms and the reliability of the extracted weather information

  • PDF

Dual-band Monopulse Receiver for Tracking Radar (추적 레이다용 Dual-band 모노펄스 수신기)

  • Yang Seong-Uk;Park Dong-Min;Na Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.767-772
    • /
    • 2006
  • The receiver of this paper is Dual-band monopulse type for prototype of tracking radar. Localization of radar technology is an issue of SamsungThales and go into development. Dual-band radar in comparison with Single-band radar requires higher cost and power consumption but there are many advantages of dealing with jamming, detection range, image signal rejection, cloud-rain influence, clutter, resolution. The receiver is comprised of X-band RF head module, Ka-band RF head module and common IF module. Each signal of X-band and Ka-band is selected by the switch in If module. Phase shifter in IF module of local stage controls the phase of sum, azimuth, elevation channel. In the test result, gain is $40{\pm}3 dB$, isolation of transmitter/receiver is 39 dBc, dynamic range is 110 dB and noise figure of each channel is 4.5dB and 6.9dB.

A Study on Simulation of Asymmetric Doppler Signals in a Weather Radar (기상 레이다에서의 비대칭 도플러 신호 모의구현에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1737-1743
    • /
    • 2008
  • A weather radar extracts the weather information from the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. The characteristics of Doppler weather signal and ground clutter should be analyzed to extract the accurate weather information. However, the conventional symmetric weather Doppler model is somewhat inappropriate in representing various weather situations. Therefore, the improved model is suggested to describe the skewness in the Doppler spectrum model. Using the suggested model, many various weather signals can be simulated efficiently in time and spectral domain according to weather situations, operation environment and system characteristics. This simulation method may be very helpful in verifying the accuracy of the weather information extraction algorithms and developing the new system for further performance improvement.