• Title/Summary/Keyword: Railway capacity

Search Result 480, Processing Time 0.033 seconds

Development of a trench shield machine for the near-surface railway construction (저심도 철도 건설을 위한 트렌치 쉴드 장비 개발연구)

  • Lee, So-Oh;Sagong, Myung;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.175-187
    • /
    • 2015
  • In this paper, the development of trench shield machine for near-surface railway construction were presented. The Near-surface railway can be constructed by cut and cover construction method, because it is installed at the depth of 5~7 m below roads. The cut and cover construction method mostly use temporary supports. The limitation of the cut and cover method is high installation cost and long construction period. To overcome these disadvantages, development of the trench shield machine is proposed and expected to shorten the construction time and cost of near-surface railway system. The sliding retaining wall of trench shield equipment replaces the role of temporary support (solider piles and lagging) and excavator equiped to the bottom front of the machine shorten the excavation time. This paper deals with design of the bit attached to the excavator and required capacity of the motor.

A Study on Robustness Analysis Model for Calculating Line Capacity in Railroad System (철도선로용량 계산을 위한 강인성 분석모형에 관한 연구)

  • Lee, Chang-Ho;Kim, Bong-Sun;Kim, Hak-Sik;Lee, Byung-Kwon;Kim, Dong-Hee;Hong, Sun-Hm
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.111-115
    • /
    • 2003
  • Railroad system is consisted of resources of rail track, signal system, and vehicles. Railway operation must use these limited resources and maximize resource utilization. Line capacity(number of trains throughput/day) is determined by such as parameters, line utilization rate($\alpha$), dummy rate for the break-through hour($\beta$), and dummy rate for the number of rail track intervals($\delta$). Line capacity simulation(LCS) determined the line capacity through simulation given $\alpha$, $\beta$, and $\delta$. This paper deals with the development of parameter evaluation simulation(PES). PES presents the decision maker with the relationship of line capacity and measurement of robustness for various scenarios in different parameters and then the decision maker can determine the appropriate parameters.

An Evaluation Study on the Dynamic Stability of High Speed Railway Bridges (고속철도교량의 동적안정성 평가연구)

  • Bang, Myung-Seok;Chung, Guang-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2012
  • In the design of high speed railway bridges is important a impact factor as a tool of assessing the dynamic capacitys of bridges. However, the impact factor(or dynamic amplification factor, DAF) of high speed railway bridges may essentially be changeable because the dynamic response is affected by the long train length(380 m), number of axles and high speed velocity(300 km/h)(Korea Train eXpress: KTX). Therefore, on this study will be examined the dynamic capacity and stability of the typical PSC Box Girder of high speed railway bridge. At first, the static/dynamic analysis is performed considering the axle load line of KTX based upon existing references. Additionally, the KTX moving load is transformed into the dynamic time series load for conducting various parameter studies like axle length, analytical time increment, velocity of KTX. The time history analysis is repeatedly performed to get maximum dynamic responce by varying axle load length, analytical time increment, velocity of KTX. The study shows that dynamic analysis has resonable results with optimal axle load length(0.6 m) and time increment(0.01 sec.) and maximum DAF and dynamic resonance happens at 270 km/h velocity of KTX.

Investigation of Autotransformer Configuration to Enhance Collecting Voltage in Train (집전 전압 향상을 위한 교류급전시스템의 단권변압기 구성 검토)

  • Kim, Joo-Rak;Kim, Jung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • AC traction power supply system has adopted autotransformer (AT) feeding method. This system has an advantage as long feeding distance. However, the countermeasure for voltage drop should be considered, because load capacity grows larger and headway grows shorter in recent electric railway system. This paper proposes the improved system configuration to enhance voltage drop in ac railway system without additional power electronic device. That is to increase turn ratio between contact wire and rail of AT. By modifying turn ratio of AT at SSP or SP, collecting voltage on train will be enhanced.

Formal Validation Method and Tools for French Computerized Railway Interlocking Systems

  • Antoni, Marc
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 2009
  • Checks and tests before putting safety facilities into service as well as the results of these tests are essential, time consuming and may show great variations between each other. Economic constraints and the increasing complexity associated with the development of computerized tools tend to limit the capacity of the classic approval process (manual or automatic). A reduction of the validation cover rate could result in practice. This is not compatible with the French national plan to renew the interlocking systems of the national network. The method and the tool presented in this paper makes it possible to formally validate new computerized systems or evolutions of existing French interlocking systems with real-time functional interpreted Petri nets. The aim of our project is to provide SNCF with a method for the formal validation of French interlocking systems. A formal proof method by assertion, which is applicable to industrial automation equipment such as interlocking systems, and which covers equally the specification and its real software implementation, is presented in this paper. With the proposed method we completely verify that the system follows all safety properties at all times and does not show superfluous conditions: it replaces all the indoor checks (not the outdoor checks). The advantages expected are a significant reduction of testing time and of the related costs, an increase of the test coverage rate, an answer to the new demand of railway infrastructure maintenance engineering to modify and validate computerized interlocking systems. Formal methods mastery by infrastructure engineers are surely a key to prove that more safety is not necessarily more expensive.

  • PDF

Economic Evaluation of ESS Applying to Demand Response Management in Urban Railway System (도시철도부하 수요자원 관리에 ESS 활용 시 경제성 분석)

  • Park, Jong-young;Heo, Jae-Haeng;Kim, Hyeongig;Kim, Hyungchul;Shin, Seungkwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.222-228
    • /
    • 2017
  • The aims of the demand response market are stabilization of the power supply and improving of the reliability of the power system. The various applications of the energy storage system (ESS) in the railway systems are studied and implemented to raise the energy efficiency. It is one of the most important how to determine the obligation reduction capacity (ORC) in participation to the demand response market because it has an influence on the profit extremely. In this paper, when participating to the demand response market with demands in the urban railway, we calculated the available ORC and economically evaluated ESS based on the real load data.