• Title/Summary/Keyword: Railway Slope

Search Result 117, Processing Time 0.024 seconds

Development of Short-fiber Composite Reinforced Retaining Wall for Railroad Soil Structure (노반 토구조물로서의 이용을 위한 새로운 단섬유 복합보강토 옹벽구조 개발)

  • Park Young-Kon;Park Tae-Soon;Chang Pyoung-Wuck;Lee Young-Je
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1014-1019
    • /
    • 2004
  • The development of both economical and consistent structure is strongly required for the whole reorganization of the railway network in Korea. Retaining wall is one of the major structures in the vicinity of the railway, which needs improving its external appearance and stability. Therefore, this study presents a new type of retaining wall, so called short-fiber composite reinforced retaining wall, as an alternative of retaining walls, which can be used for constructing the slope and roadbed soil structures. The results from real-scale test and dynamic numerical analysis for developed new one, which helps both the improvement of the external appearance and also the optimum use of the limited space near the railway, show excellent performance. On the basis of these results, it is judged that short-fiber composite reinforced retaining wall has the advantages of choosing the front wall freely and having a chance to use any low quality soil as backfill.

  • PDF

A Review on Field Constraints for Railway Conflict Detection and Resolution Problem; focusing on the Korean Regional Railway System (열차경합 검지 및 해소 문제를 위한 현실제약의 고찰: 한국철도의 사례를 중심으로)

  • Oh Seog-Moon;Kim Jae-Hee;Hong Soon-Heum;Park Bum-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1374-1378
    • /
    • 2004
  • Railway conflict detection and resolution problem (RCDRP) involves complicated field constraints that should be considered for practical service. In this paper, we address those constraints in brief. Particularly, following situations are addressed; (1) temporal change of network topology, (2) consideration of diverse conditions of track and train, for example, single/double tracks and passenger/freight service, (3) siding capacity limitation, (4) bidirectional sides used by both inbound and outbound trains, (5) regulation for passenger transfer service, (6) consideration of siding length, (7) Restriction on stopping before the track segment with steep slope.

  • PDF

Numerical Analysis for Railway Embankment with Geotextile Container (토목섬유 콘테이너를 적용한 철도사면의 수치해석적 연구)

  • Koh TaeHoon;Hwang Seon Keun;Park Sung Hyun;Lee Jin Wook
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.403-410
    • /
    • 2003
  • Annual roadbed failure due to the rainfall has brought out the social and economic damage such as the loss of life and property, the consumption of time and cost for recovery, and the delay of logistics in railway. However, there was not an appropriate way that could be used as a permanent solution. As a suggestion of the answer to this problem, the method using Geotextile Container was considered for the rehabilitation of the failed railway roadbed, and the numerical analysis is applied for the evaluation of the slope stability. This study focused on the most common case among the roadbed failures. In addition, the investigation for the applicability of this method as a permanent use was made.

  • PDF

An Approach for Security Problems in Visual Surveillance Systems by Combining Multiple Sensors and Obstacle Detection

  • Teng, Zhu;Liu, Feng;Zhang, Baopeng;Kang, Dong-Joong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1284-1292
    • /
    • 2015
  • As visual surveillance systems become more and more common in human lives, approaches based on these systems to solve security problems in practice are boosted, especially in railway applications. In this paper, we first propose a robust snag detection algorithm and then present a railway security system by using a combination of multiple sensors and the vision based snag detection algorithm. The system aims safety at several repeatedly occurred situations including slope protection, inspection of the falling-object from bridges, and the detection of snags and foreign objects on the rail. Experiments demonstrate that the snag detection is relatively robust and the system could guarantee the security of the railway through these real-time protections and detections.

Strength and Durability Test of Rapid Hardening Composite Mat for Protect Railway Slope in Operation (운영중인 철도비탈면 보호를 위한 초속경 복합매트의 강도 및 내구성 실험)

  • Hyun-Sang, Yoo;Tae-Hee, Kang;Hyuk-Sang, Jung;In-Chul, Back
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.79-91
    • /
    • 2022
  • Recently, the frequency of damage to slopes for highways, railways, and complexes has been increasing according to abnormal climates such as heavy rainfall or snowfall. Rapid Hardening Composite Mat (RHCM) could be a satisfactory alternative because it has the advantages that large-scale earthwork is not essential and the period for restoration is minimized. Also, this method does not require heavy machines and a phase of maintenance for slopes against the shotcrete method or planted slope protection, which are representative slope protection methods. Furthermore, the curing time is shorter than Geosynthetic Concrete Composite Mat (GCCM). Therefore, RHCM could be useful for emergency restoration work. Thus, in this study, the strength and duration of RHCM are estimated, compared, and analyzed with GCCM. As a result of the laboratory test, the strength of RHCM is greater 51%, and the duration is larger 69% than GCCM.

Applicability Evaluation of PSC-U Type Girder and Precast Deck to the Vertical Curves in Urban Maglev Train Route (도심형 자기부상열차 선로 종곡선 구간에서의 PSC-U 형 거더와 프리캐스트 바닥판 적용성 평가)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Lee, Yun-Seok;Ma, Hyang-Wook;Oh, Hyun-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.24-30
    • /
    • 2008
  • One of the characteristics of the Maglev Train is the prominent capability of upgoing. Maglev train with the aim of longitudinal slope 7/100 is under development by the Center for Urban Maglev Program in Korea. To realize these slope, vertical curves must be inserted before and after the slope. The inserted curve has the radius of 3,000m generally. The insertion of these vertical curve results in the additional differences between the girder upper face and the guide rail, and the alignments are controlled by cast in place concrete at present. In this study, for longitudinal curved route with longitudinal slope 6/100, the applicability of PSC-U type girder and precast deck was evaluated for the span length 25m, 30m and vertical curve radii with 3,000m and 1,500m with respect to longitudinal slope 6/100.

  • PDF

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

Stability Analysis of the Concave Zone in a Slope Considering Rainfall (강우를 고려한 사면내 요부(凹部)에서의 안정성 해석)

  • Sagong Myung;Lim Kyoung-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.77-86
    • /
    • 2005
  • Since slope sliding and loss of railway triggered by a rainfall produce instability in the operation of trains, a proper method to estimate the slope stability considering rainfall Is required. from the field study, sliding induced by rainfall depends on the engineering properties of soils, three dimensional aspect of the slope, rainfall intensity and geological conditions of the soil layers. In this study, among various types of sliding, slope Instability caused by the surface runoff water at the concave zones in a slope is investigated. The depth of runoff water is calculated by using the Rational method and Manning equation. The occurrence of runoff water is evaluated by a comparison between the calculated infiltration rate and rainfall intensity. Pressure heads which can be calculated from the modified Iverson model are used to calculate the factor of safety along the vertical depth of the slope. The modified Iverson model considers the depth of runoff water, thus the maximum hydraulic gradient along the depth of slope is greater than one.

A Case Study on The Stability and Reinforcement Method at a Rock Slope (암반사면의 안정성검토 및 보강방안에 관한 사례연구)

  • Chun, Byung-Sik;Lee, Seung-Eun;Kong, Jin-Young;Lim, Joo-Heon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1369-1375
    • /
    • 2006
  • This study analyzes stability and the reason of slope failure about cut slope on stony mountain in Acheondong, Guri and suggests the reasonal reinforce method. Based on the results of the subsurface exploration, laboratory tests, and the numerical analysis of finite element method, the potentials of plane and wedge failure are highly estimated. The safety factor was 1.2 under dry and 1.06 wet condition. The most proper reinforce method to raise the safety factor more than 1.5 was the way to control displacement by using step retaining wall, earth anchor, wire mesh, and rock anchor.

  • PDF

A Study on the Stability for the Railroad Bed and the Foundation Ground (High Landfill Slope) (철도노반과 기초지반(고성토사면) 안정에 관한 연구)

  • Oh, Myoung-Ryoul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1391-1404
    • /
    • 2006
  • Recently, medium or slight earthquakes was occurred in the Korea Peninsula and seismic design is considered seriously in the railroad facilities as case of other civil engineering facilities. In this study, it selected the Seongnam-Yeoju railroad 6th section and seismic analysis was accomplished. Specially, unlike existing seismic analysis using the artificial earthquake and the real earthquake, seismic analysis using a seismic vibration and the train vibration was accomplished. 1-D and 2-D ground response analysis of the railroad bed and 3-D Finite element analysis in the bridge connection section of high landfill slope was accomplished. Also, slope stability analysis and the evaluation of liquefaction was accomplished.

  • PDF