• Title/Summary/Keyword: Railroad Technology

Search Result 910, Processing Time 0.029 seconds

Correlation Analysis between Dynamic Wheel-Rail Force and Rail Grinding (차륜-레일 상호작용력과 레일연마의 상관관계 분석)

  • Park, Joon-Woo;Sung, Deok-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2017
  • In this study, the influences of rail surface roughness on dynamic wheel-rail forces currently employed in conventional lines were assessed by performing field measurements according to grinding of rail surface roughness. The influence of the grinding effect was evaluated using a previous empirical prediction model for dynamic wheel-rail forces; model includes first-order derivatives of QI (Quality Index) and vehicle velocity. The theoretical dynamic wheel-rail force determined using the previous prediction equation was analyzed using the QI, which decreased due to rail grinding as determined through field measurements. At a constant track support stiffness, an increase in the QI caused an increase in dynamic wheel-rail forces. Further, it can be inferred that the results of dynamic wheel-rail analysis obtained using the measured data, such as the variation of QI due to rail grinding, can be used to predict the peak dynamic forces. Therefore, it is obvious that the optimum amount of rail grinding can be determined by considering the QI, that was regarding an operation characteristics of the target track (vehicle velocity and wheel load).

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.

Improvement of Regulations for Establishing Spatial Information Data Base of Railway Facilities (철도시설 공간정보DB 구축을 위한 법제도 개선방안)

  • Chung, Sung Bong;Choi, Ji Ho;Won, Jongun;Kim, Dongsun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.187-193
    • /
    • 2017
  • Government has established and operated GIS Data Base in such fields as land-use, road, and underground facilities since 1995. Based on these circumstances, the importance of spatial information industry began to emerge and accordingly MLIT (Ministry of Land, Infrastructure and Transport) established "National Spatial Information Policy Master Plan" and "National Spatial Information Policy Action Plan". However, compared to other fields of transportation, the spatial information data base for railway facilities are not established and provided systematically. As shown in 'Korea National Spatial Data Infrastructure System', only 'transportation information' as an related information and 'transportation' field as an administrative information are included in the system. Detailed information for railway and its facilities are not included in the system. The reason why detailed information for railway facilities are not included in the system is that regulations for establishing and utilizing the spatial information of railway and its facilities are imperfect. In this study, trend of establishing spatial information and regulations related to railway and its facilities are reviewed. Through this review, improvement items such as complementing existent laws and establishing organization for managing spatial information data of railway are deduced and suggested. Based on this research 'Korea National Spatial Data Infrastructure System' could set a legal fundament and both integrated maintenance and operation of railway facilities could be possible.

Determination of Maintenance Period Considering Reliability Function and Mission Reliability of Electromagnetic Valves of EMU Doors Considering Air Leakage Failure (전동차 출입문 전자변 누기고장의 신뢰도 함수와 임무 신뢰도를 고려한 정비 주기 결정)

  • Park, Heuiseop;Koo, Jeongseo;Kim, Gildong
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.569-576
    • /
    • 2017
  • The electromagnetic valve of pneumatic doors of EMUs has a high failure rate due to air leakage because it supplies air on and off to operate the doors repeatedly. The electromagnetic valve is a very important safety component for which a very high reliability is required because failure makes it impossible to operate the passenger cars. However, domestic urban railway operators maintain electronic valves of the EMU door under a fixed cycle with a spare period according to the full overhaul cycle of the EMU. An improvement of the current maintenance cycle was suggested based on the reliability function and mission reliability. Using the statistical program MINITAB for the operational data of EMU line 6, we analyzed the characteristics of the fault distribution and derived the shape and scale parameters of the reliability function. If we limit the specific reliability probability to under a certain failure rate and calculate its statistical parameters, we can calculate the allowable inspection period with mission reliability. Through this study, we suggested a maintenance period based on RCM (reliability centered-maintenance) to improve the reliability of electromagnetic valves from 68% to 95%.

3-D Free Vibration Analysis of Exponential and Power-law Functionally Graded Material(FGM) Plates (지수 및 멱 법칙 점진기능재료 판의 3차원 자유진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Ahn, Jin-Hee;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.553-561
    • /
    • 2015
  • The exponential and power law functionally graded material(FGM) theory is reformulated considering the refined shear and normal deformation theory. This theory has ability to capture the both normal deformation effect and exponential and power law function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported plates on Pasternak elastic foundation. Numerical solutions of vibration analysis of FGM plates are presented using this theory to illustrate the effects of power law index and 3-D theory of exponential and power law function on natural frequency. The relations between 3-D and 2-D higher-order shear deformation theory are discussed by numerical results. Further, effects of (i) power law index, (ii) side-to-thickness ratio, and (iii) elastic foundation parameter on nondimensional natural frequency are studied. To validate the present solutions, the reference solutions are discussed.

Preliminary Design of a Urban Transit Passenger Guidance System Using Congestion Management Model (혼잡관리 모형을 이용한 도시철도 이용객 동선유도시스템 기본설계)

  • Kim, Kwang-Mo;Park, Hee-Won;Kim, Jin-Ho;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3610-3618
    • /
    • 2015
  • The congestion of railway vehicle and station shows up to 220%. Especially, transfer resistance of passenger increase rapidly by the collision of circulation. So increment of travel time, occurrence of safety accidents act as a factor that inhibits the utilization of urban railway station. In this paper, to improve traveling speed and comfort of urban rail passengers, urban transit passenger guidance system using congestion management model is proposed. The congestion management model that can mitigate a recurring/non-recurring congestion is constructed and the preliminary design of the system (middleware system, control system, guidance drive system) is carried out. Passenger Guidance System is configured by step for changing the external data into a form usable by the algorithm, step to perform the congestion management algorithm using the real-time data and historical data, step to control device based on the value that is calculated by congestion management algorithm, step to drive the device based on the information in the control system and circulation guidance devices. In the future, detail design will be performed based on the preliminary design. A prototype of the various devices according to the station structures and locations will be made. The control module of guidance device will be developed.

Nonlocal elasticity effects on free vibration properties of sigmoid functionally graded material nano-scale plates (S형상 점진기능재료 나노-스케일 판의 자유진동 특성에 미치는 비국소 탄성 효과)

  • Kim, Woo-Jung;Lee, Won-Hong;Park, Weon-Tae;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1109-1117
    • /
    • 2014
  • We study free vibration analysis of sigmoid functionally graded materials(S-FGM) nano-scale plates, using a nonlocal elasticity theory of Eringen in this paper. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Numerical solutions of S-FGM nano-scale plate are presented using this theory to illustrate the effect of nonlocal theory on natural frequency of the S-FGM nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index (ii) nonlocal parameters, (iii) elastic modulus ratio and (iv) thickness and aspect ratios on nondimensional frequencies are investigated. In order to validate the present solutions, the reference solutions are compared and discussed. The results of S-FGM nano-scale plates using the nonlocal theory may be the benchmark test for the free vibration analysis.

Evaluation of Mechanical Properties of Extruded Magnesium Alloy Joints by Friction Stir Welding : Effect of Welding Tool Geometry (마찰교반용접 툴 변화에 따른 마그네슘 합금 압출 판재 마찰교반용접부 기계적 물성 평가)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lee, Woo-Geun;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.280-288
    • /
    • 2016
  • This study proposes improved welding tools for magnesium alloys. Two types of tools were used for friction stir welding (FSW). The effect of the welding tools on the FSW joints was investigated with a fixed welding speed of 200mm/min and various rotation speeds of 400 to 800 rpm. After FSW, the joints were cross-sectioned perpendicular to the welding direction to investigate the defects. A tensile test and Vickers hardness test were conducted to identity the mechanical properties of the joints. Defects were observed when the rotation speed was 400 rpm, regardless of the welding tool, and the amount of defects tended to decrease with increases in rotational speed. Defect-free welds were obtained when the rotation speed was 800 rpm. The best weld quality was acquired using the C type welding tool. The rotation speed of 800 rpm and welding speed of 200 mm/min produced the best joining properties. The ultimate tensile strength, yield strength, and elongation of the welded region were 90.0%, 69.1%, and 83.2% those of the base metal, respectively.

A Study on Monitoring of Mitigation of Rail Corrosion using Sacrificial Anode Cathodic Protection Method (희생양극법을 적용한 철도 레일의 방식효과 모니터링 연구)

  • Choi, Jung-Youl;Park, Jong-Yoon;Lee, Kyu-Yong;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.367-371
    • /
    • 2019
  • In this study, we proposed the sacrificial anode cathodic protection method as a countermeasure to reduce the corrosion of railway rails under oceanic climatic conditions and proved the anticorrosive effect experimentally. In addition, the proposed sacrificial anode cathodic protection method were tested on site to examine long-term rail corrosion monitoring and field applicability for more than 26 months and to prove the effectiveness of rail corrosion. As a result of monitoring the corrosion state using the cellophane tape method, the appearance of the applied sections with sacrificial anode cathodic protection method was good at the present time about 26 months after the field test laying, and no abnormalities and other abnormalities of the rail welded section and the rail web were found. Hence, in places where no sacrificial anodes were installed, rust progressed rapidly. In addition, the proper spacing of sacrificial anodes was found to form the most stable corrosion coating at 1.0 ~ 1.5m. After about 26 months of monitoring, the installation of sacrificial anodes could help stabilize the overall rail corrosion level, even if the spacing was somewhat wider.

Study on Flexural Properties of Polyamide 12 according to Temperature produced by Selective Laser Sintering (선택적 레이저 소결 제작 폴리아미드 12 시편의 온도별 굴곡 특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.319-325
    • /
    • 2018
  • The use of 3D printing (Additive Manufacturing) technology has expanded from initial model production to the mass production of parts in the industrial field based on the continuous research and development of materials and process technology. As a representative polymer material for 3D printing, the polyamide-based material, which is one of the high-strength engineering plastics, is used mainly for manufacturing parts for automobiles because of its light weight and durability. In this study, the specimens were fabricated using Selective Laser Sintering, which has excellent mechanical properties, and the flexural characteristics were analyzed according to the temperature of the two types of polyamide 12 and glass bead reinforced PA12 materials. The test specimens were prepared in the directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ based on the work platform, and then subjected to a flexural test in three test temperature environments of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, PA12 had the maximum flexural strength in the direction of $90^{\circ}$ at $-25^{\circ}C$ and $0^{\circ}$ at $25^{\circ}C$ and $60^{\circ}C$. The glass bead-reinforced PA12 exhibited maximum flexural strength values at all test temperatures in the $0^{\circ}$ fabrication direction. The tendency of the flexural strength changes of the two materials was different due to the influence of the plane direction of the lamination layer depending on the type of stress generated in the bending test.