• Title/Summary/Keyword: Rail-to-rail

Search Result 3,391, Processing Time 0.031 seconds

Analysis of Factors Increasing Construction Cost for the Curtain-wall Accompanied by the Installation of a Guide Rail for High-rise Building Maintenance (초고층 외벽 유지관리용 Guide Rail 설치에 따른 커튼월 공사비 증가요인 분석)

  • Kim, Chang-Han;Han, Jae-Goo;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.97-98
    • /
    • 2011
  • The number of high-rise buildings has increased year after year, with there currently being 5 projects in progress to construct buildings higher than 100 stories in Seoul alone. The construction cost for such high-rise buildings is significantly higher than the cost for a conventional low-rise building, while maintenance costs are expected to be two to three times higher. To reduce the maintenance cost of a high-rise building, there is the need for a guide rail to be used for maintenance, which is why there is the need for research on the guide rail system. For this reason, as preliminary research to develop a guide rail, this study aims to derive the factors increasing construction cost by taking the installation of a guide rail into account. This is expected to lay the groundwork for the design and construction of guide rails for high-rise building maintenance.

  • PDF

A Control Strategy of Fuel Injection Quantity and Common-rail Pressure to Reduce Particulate Matter Emissions in a Transient State of Diesel Engines (승용디젤엔진의 과도구간 입자상물질 저감 및 운전성능 향상을 위한 연료분사량 및 커먼레일압력 제어전략)

  • Hong, Seungwoo;Jung, Donghyuk;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.623-632
    • /
    • 2015
  • This study proposes a control strategy of the common rail pressure with a fuel injection limitation algorithm to reduce particulate matter (PM) emissions under transient states. The proposed control strategy consists of two parts: injection quantity limitation and rail pressure adaptation. The injection limitation algorithm determines the maximum allowable fuel injection quantity to avoid rich combustion under transient states. The fuel injection quantity is limited by predicting the burned gas rate after combustion; however, the reduced injection quantity leads to deterioration of engine torque. The common rail pressure adaptation strategy is designed to compensate for the reduced engine torque. An increase of the rail pressure under transient states contributes to enhancement of the engine torque as well as reduction of PM emissions by promoting atomization of the injected fuel. The proposed control strategy is validated through engine experiments. The rail pressure adaptation reduced the PM emission by 5-10% and enhanced the engine torque up to 2.5%.

Ergonomic and performance analysis of rail-type boom sprayer for agro-photovoltaic power system

  • Rack-Woo Kim;Jae-Woong Han;Woong Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.151-162
    • /
    • 2022
  • This study was conducted to develop a rail-type boom sprayer, performing safe spraying with improved ergonomic postures during pesticide spraying of agro-photovoltaic power system. The sprayer was designed to reduce labor cost and to be safe from pesticide exposure, and was analyzed through a comparison with a conventional spray method. The rail-type boom sprayer, consisted of a self-propelled spray and hose winder, hose, and boom sprayer parts, was designed to automatically pull and spray in the vertical and horizontal directions. The performance of the sprayer for an agro-photovoltaic power system was appropriate. From the analysis of postures with the Ovako Working posture Analysis System (OWAS), Rapid Entire Body Assessment (REBA), and Rapid Upper Limb Assessment (RULA) methods, the musculoskeletal risk factors to the body using the rail-type boom sprayer were less than those with the conventional power sprayer. In addition, the possibility of pesticide poisoning was reduced compared to the conventional power sprayer. The working capacity with the rail-type boom sprayer was more than five times greater, compared with the conventional power sprayer. After performing pesticide spraying with the rail-type boom sprayer, the labor cost was reduced to 42,750 won·yr-1, which was 90% (402,750 won·yr-1) less than the cost with the use of a conventional power sprayer (445,500 won·yr-1).

Theoretical Analysis on the Array Microphone Measurement for Noise from Rails (배열 마이크로폰을 이용한 레일 방사 소음 측정에 관한 이론 해석)

  • Ryue, Jungsoo;Jang, Seungho;Kwon, Hyu-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.238-247
    • /
    • 2014
  • In this paper, rail vibration and its sound radiation are investigated, then the rail noise measurement by using microphone array is explored theoretically. A concrete slab track for domestic high speed trains is modeled as a Timoshenko beam on elastic support, regarding the moving of the excitation force on the rail. From the radiation characteristics of rail noise generated by a line source, the effect of moving load on sound radiation is obtained. Also it is found that the beam angle of the microphone array is a prominent factor to measure the rail noise level reliably because the rail noise propagates as a plane wave. In this investigation, a proper beam angle for the rail noise measurement by microphone array is suggested.

Structuring of Unstructured SNS Messages on Rail Services using Deep Learning Techniques

  • Park, JinGyu;Kim, HwaYeon;Kim, Hyoung-Geun;Ahn, Tae-Ki;Yi, Hyunbean
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents a structuring process of unstructured social network service (SNS) messages on rail services. We crawl messages about rail services posted on SNS and extract keywords indicating date and time, rail operating company, station name, direction, and rail service types from each message. Among them, the rail service types are classified by machine learning according to predefined rail service types, and the rest are extracted by regular expressions. Words are converted into vector representations using Word2Vec and a conventional Convolutional Neural Network (CNN) is used for training and classification. For performance measurement, our experimental results show a comparison with a TF-IDF and Support Vector Machine (SVM) approach. This structured information in the database and can be easily used for services for railway users.

A Study on the Wedge Angle of the Rail Clamp according to the Design Wind Speed Criteria Change

  • Lee Jung-Myung;Han Dong-Seop;Han Geun-Jo;Jeon Young-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.641-646
    • /
    • 2005
  • In cargo-working, it unavoidably happens that the quay crane slip along the rail and the container move from side to side. Especially, they involve a lot of risk in bad weather. The rail clamp is a mooring device to prevent that the quay crane slips along the rail due to bad weather or the wind blast while the quay crane do the cargo-working And it will play a greater role in port container terminal integration and automation To design the wedge type rail clamp, it is very important to determine the wedge angle. In this study, we expect that the design wind speed of the quay crane will change over 16m/s. Assuming that the design wind speed is 40m/s, we determined the proper wedge angle of the wedge type rail clamp for the 50ton class quay crane.

Fundamental Aspects of the Unbalance Condition for the Forces involved in Rail Gun Recoil

  • Banerjee, Arindam;Radcliffe, P.J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.317-324
    • /
    • 2014
  • The forces involved in the firing of the electromagnetic rail gun may be analyzed from Amperian, Maxwellian and Einsteinian approaches. This paper discusses these different paradigms with regard to rail gun performance modeling relating to the generation and balance of the forces caused by the currents and their induced magnetic fields. Recent experimental work on model rail guns, where the armature is held static, shows very little recoil upon the rails, thereby indicating a possible violation of Newton's Third Law of Motion. Dynamic testing to show this violation, as suggested by the authors in an earlier paper, has inherent technical difficulties. A purpose-built finite element C/C++ simulator that models that suspended rail gun firing action shows a net force acting upon the entire rail gun system. A new effect in physics, universal in scope, is thus indicated: a current circulating in an asymmetric and rigid circuit causes a net force to act upon the circuit for the duration of the current. This conclusion following from computer simulation based upon Maxwellian electrodynamics as opposed to the more modern relativistic quantum electrodynamics needs to be supported by unambiguous experimental validation.

Study on the Profile of Body Spring in the Flat Type Wiper Blade for an Intended Contact Pressure Distribution (임의의 누름압 분포를 나타내는 플랫형 블레이드 스프링 레일의 곡면 형상)

  • Song, Kyoungjoon;Lee, Hyeongill
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • An analytical procedure to determine a proper profile of the spring rail that generates intended contact pressure distribution in the flat wiper blade is introduced. The flat wiper blade is one piece blade and subjected to pressing force at a center point. In this type of blade, contact pressure distribution in the tip of rubber strip is determined by the pressing force, the initial profile of the blade before contact and bending stiffness of the blade. Experimentally obtained bending stiffness of the blade assembly is almost identical to that of the spring rail. Principle of reciprocity has been used to define the initial profile of spring rail from the deformed profile that is assumed to be identical to the windshield glass profile. The procedure has been verified experimentally by measuring the contact pressure of the blade assembled with the spring rail designed by the procedure proposed here. Measured contact pressure distributions of the blades show good agreements with intended distributions over the entire blade span. Consequently, it can be concluded that proposed procedure has relatively good accuracy in developing the spring rail for flat blade having a specific contact pressure distribution.

The Study on the Structural Characteristics for the Royal Tomb of the Joseon Dynasty from the 15th Century to the early 17th Century - Focusing on the Bongneung Equipped with only Rail Stones - (15~17세기 초, 난간석만 갖춘 조선왕릉의 등장과 구조적 특징)

  • Shin, Ji-hye
    • Journal of architectural history
    • /
    • v.32 no.5
    • /
    • pp.31-42
    • /
    • 2023
  • This study examined the structural characteristics of the royal tomb equipped with only rail stones in the early Joseon Dynasty. Bongneung(封陵: the burial mound of royal tomb) equipped with only rail stones was constructed from 1468 to 1632. During this period, Hyeongung(玄宮: the underground chamber for the coffin of the king or queen) was constructed with lime. When the Hyeongung is completed, the soil is covered with a thickness of 1 foot parallel to the ground surface. On top of that, as the base of the Bongneung, the rail ground stone is constructed with a height of about 1.5 to 2 feet. The inside of the rail ground stone is also firmly filled with soil. On top of this, semicircular lime is installed with a convex center. Lastly the soil is divided and compacted several times to form a hill, and then covered with grass to complete the Bongneung. The notable feature is that between the Hyeongung made of lime and the Bongneung made of soil, the rail ground stone serves as a stylobate with the inside compacted by the soil.

Wheel-Rail Contact Analysis considering the Deformation of Wheel and Axle (차륜 및 차축의 변형을 고려한 차륜-레일 접촉해석)

  • Choi, Ha-Young;Lee, Dong-Hyong;You, Won-Hee;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.20-27
    • /
    • 2010
  • A precise evaluation of the contact position and the distribution of contact pressure in a wheel-rail interface analysis is one of the most important procedures to predict fatigue life and wear of wheel and rail. This paper presents the analysis result of finite element method(FEM) to investigate how the deformation of a wheelset, which is the assembly of wheel and axle of a railroad vehicle, affect the contact analysis of wheel and rail. 3D-FEM was used to analyze three contact models; a model with only wheel, a model with wheelset, and a model with simplified wheel and rail geometry. The analysis result of the contact position and the distribution of contact pressure are discussed. It is shown that the analysis results of a model with wheelset represent largest value with respect to contact pressure and contact stress. Furthermore, it is found that the distribution of contact pressure and the contact position is highly affected by the deformation of wheel and axle. It is concluded that the deformation of axle should be considered to evaluate the exact contact parameters in a wheel-rail contact analysis.