• Title/Summary/Keyword: Rail-to-Rail

Search Result 3,384, Processing Time 0.039 seconds

Review of Non-Destructive Evaluation Technologies for Rail Inspection (철도 레일의 결함 검출을 위한 비파괴탐상 기술)

  • Han, Soon-Woo;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.398-413
    • /
    • 2011
  • For railway safety, it is very important to detect damages of rails at their early stage because any undetected damage in a rail can break the rail and cause a serious railway accident. In this paper, several NDT applicable to rail inspections are described. Major damage types in rails are discussed first and the rail inspection technology using conventional piezoelectric ultrasonic transducers, which is widely adopted for damage detection of rails, is explained. Other NDT being researched or tested for rail inspection are also discussed as complementary technologies to the concurrent contact type ultrasonic inspection. Characteristics of each rail inspection technologies are evaluated in order to provide requirements for future development of a new rail inspection method.

Influence Factors Affecting the Longitudinal Force of Continuous Welded Rail on Railroad Bridges (장대레일 철도 교량의 축력 영향인자 분석)

  • Kim Kyung Sam;Han Sang Yun;Lim Nam Hyoung;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.385-390
    • /
    • 2003
  • Recently, use of Continuous Welded rail(CWR) is increased for structural, economical reason but new problem is caused accordingly and phenomenon that give threat in traveling by ship stability of train is led. According as rail is prolonged, excessive relative displacement and longitudinal force can happen to rail by temperature change and external force. Specially, buckling or fracture of rail can happen in railroad bridges because relative displacement by bridge and properties of matter difference between rail grows and additional axial force happens to rail by behavior of bridge. According to several study, longitudinal force of rail in bridge is influenced with ballast resistance, elongation length, boundary condition, stiffness of framework. Non-linear behavior of ballast acts by the most important factor in interaction between rail and bridge. Therefore, must consider stiffness of bridge construction with non-linear characteristic of ballast and stiffness of base for accuracy with longitudinal force calculation and analyze. In this study, perform material non-linear analysis for longitudinal force of CWR and three dimensional buckling analysis to decide buckling force.

  • PDF

The Prediction Equation for Bending Stress of Rail in Concrete Track by the Linear Multiple Regression Analysis (중회귀분석을 통한 콘크리트궤도 레일 휨응력 예측식)

  • Sung, Deok-Yong;Lim, Hyoung-Jun;Lee, Dong-Wook;Kim, Bag-Jin;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.315-323
    • /
    • 2010
  • It is suggested that the service life of the continuous welded rail(CWR) is estimated by the relationship between the rail surface irregularity according to the accumulated passing tonnage and bending fatigue of welded part in CWR. In this study, it measured bending stress of rail according to the rail surface irregularity in the concrete track on the Seoul Metro. In addition, the relationship between rail surface irregularity and bending stress in concrete track is analyzed by results of the field test. Finally, this study clarified the relationship among bending stress(Y) of rail, train speed(U), rail surface irregularity(v, w) in concrete track. The result of this study is able to use the basis data to establishing the periodic replacements criterion of CWR.

  • PDF

A Study On The Construction Methods In PSC Rail Beams (PSC 궤도빔의 가설공법에 대한 검토)

  • Ahn, Yong-Mo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1293-1299
    • /
    • 2010
  • Daegu urban railroad line 3 is introduced with straddle-type monorail system within the country at the first time. This system is long line with 24km in total length which has not the results of construction in Korea. The rail beam of monorail bridge to be constructed/ installed in the city is adopted on the basis of the PSC rail beam. It is required to apply the steel rail beam at rapid/ curved line parts or location to be required the long span bridge as passing river and intersection. The composition of span bridge is various and the height of bridge is change with each section and exist the different curve radius due to all section is passes in the city. The rail beam shall be considered the ground conditions and then consider the construction methods. It is analyzed to construction period of PSC rail beam to be linked with period of infrastructure construction and construction of steel rail beam, structure construction of station etc. It is compared to crane construction methods and launching girder as alternative construction methods and propose to upper construction methods which is superior in economic and construction.

  • PDF

Design of the Railbeam Lengths at the Roadbed (철도 레일빔 설계법에 대한 연구)

  • Jung, Hyuksang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • This paper deals with contents on the estimation of rail beam from the geotechnical engineering aspect. Rail beam is reinforced rail installed on the inside and outside of rail to prevent differential settlement during the construction period of railroad crossing construction. Such rail beam is frequently being installed to ensure stability of existing railroad facilities because of increasing constructions of underground structures crossing railroad in recent. However, there is a difficulty in design due to lack of design standard on rail beam length. Furthermore, derailing accidents are also occurring as a result of rail beam length shortage. Accordingly, this paper presented flow chart based on the classification into soil ground and bedrock ground for the rail beam length estimation. In addition, case study was conducted on rail combination and location through which effective rail combination and location were ensured.

Estimation of Rail Irregularities by using Acceleration values (가속도 값을 이용한 궤도 불규칙도 검측)

  • Kim, Young-Mo;Park, Chan-Kyoung;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2173-2178
    • /
    • 2008
  • Railroad is the major factor of vibration source in railway vehicles, and it must carefully maintained the original condition to secure the safety and good ride comfort of passenger. Measuring the condition of rail irregularities such as surface, alignment, gauge, twist and cant etc is required to maintain the good performance of railroad. Currently, the various rail irregularity measurement systems(EM120, ROGER1000K and the Total Rail Irregularity Measurement system of Korea High Speed Train) are operated in Korea to estimate the rail irregularity. It is hard to verify the correlation of one rail irregularity data of a measurement system with the other, because they have been adopted different rail irregularity estimation methods. The best method securing the reliability of the irregularity data is the direct confirmation on the ground where the measurement system had detected as a fault section, but it is impossible to apply all sections simultaneously due to limitation of time, labor, cost and equipments. There is a method to secure the reliability of the data by using acceleration values. Rail irregularities, the major factor of vibration in railway vehicle, are transmitted to the vehicle acceleration through masses, springs, dampers and joints as the system dynamic formation. In this study, Transition Function has been adopted by using the rail irregularity and the acceleration value regarding as input & output parameters respectively. It has been verified by comparing the analyzed results with real measured irregularity data from the Total Rail Irregularity Measurement system of Korea High Speed Train. Also various methods has been accomplished to verify the correlation between rail irregularities and acceleration values.

  • PDF

Fatigue Crack Growth and Fracture behavior of Rail Steels

  • Seo, Jung Won;Kwon, Seok Jin;Lee, Dong Hyeong;Kwon, Sung Tae;Choi, Ha Yong
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.129-134
    • /
    • 2012
  • Contact fatigue damages on the rail surface, such as head checks and squats are a growing problem. The fatigue cracks forming on the contact surface grow according to load and lubricating conditions and may end up breaking the rail. Rail fracture can be avoided by preventing the cracks from reaching the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load to develop a maintenance plan against rail damages. Therefore, it is important to understand the mechanism of cracks initiation and growth on a rail due to repetitive rolling contact. In this study, we have investigated the crack growth behavior on the rail surface by using the twin-disc tests and the finite element analysis.

A Study on the Rail Materials Technology for Subway Based on its Sliding Wear Behavior (지하철 레일의 미끄럼 마모거동을 고려한 재료설계에 대한 고찰)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.364-369
    • /
    • 2014
  • To assess the wear behavior of rails against subway rail car wheels, we investigate the sliding wear behavior of pins derived from two types of rails (normal rails and heat-treated rails) against a disc derived from a subway rail car wheel, using a pin-on-disc-type tribometer. We base the sliding wear test conditions on the sliding conditions for wheel flange-rail gauge corner contact. We demonstrate the remarkable transition in the wear behavior of the pins derived from the rails, from severe wear to mild wear, as a function of the sliding distance. The wear rate of the heat-treated rail material in the running-in wear region is much lower than that of the normal rail material. Furthermore, the wear rates of the pins in the running-in wear region decrease with increasing hardness and with decreasing sliding speed. However, there is little difference between the heat-treated rail pin and the normal rail pin in the wear rate in the steady-state wear region. Stricter controls on the decarburized layer beneath the surface of rails are required to reduce the wear rate in the running-in wear region.

An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Lai, Zhipeng;Chai, Xilin
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.209-224
    • /
    • 2019
  • This paper describes a study of the mapping relationship between the vertical deformation of bridge structures and rail deformation of high-speed railway, taking the interlayer interactions of the bridge subgrade CRTS II ballastless slab track system (HSRBST) into account. The differential equations and natural boundary conditions of the mapping relationship between the vertical deformation of bridge structures and rail deformation were deduced according to the principle of stationary potential energy. Then an analytical model for such relationship was proposed. Both the analytical method proposed in this paper and the finite element numerical method were used to calculate the rail deformations under three typical deformations of bridge structures and the evolution of rail geometry under these circumstances was analyzed. It was shown that numerical and analytical calculation results are well agreed with each other, demonstrating the effectiveness of the analytical model proposed in this paper. The mapping coefficient between bridge structure deformation and rail deformation showed a nonlinear increase with increasing amplitude of the bridge structure deformation. The rail deformation showed an obvious "following feature"; with the increase of bridge span and fastener stiffness, the curve of rail deformation became gentler, the track irregularity wavelength became longer, and the performance of the rail at following the bridge structure deformation was stronger.

Design Optimization of Safety Barrier Consisting of Steel Rail and CFRP Post (강재 레일과 CFRP 기둥으로 이루어진 방호울타리의 최적화 설계)

  • Kim, Jung Joong;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2013
  • In this study a hybrid safety barrier system consisting of steel rail and carbon fiber reinforced polymer (CFRP) post is considered. W hile CFRP post is selected for impact energy reflection due to its high strength, steel rail is selected for impact energy absorption due to its high ductility. A numerical model considering the elastoplastic behavior of steel is formulated to simulate the dynamic responses of the hybrid system subject to an impact load. A hybrid roadside guard rail system of steel rail and CFRP post is proposed and analyzed with a case study. The numerical model for the hybrid roadside guard rail system is used to find optimized design of the proposed hybrid system.