• 제목/요약/키워드: Rail-Roof

검색결과 34건 처리시간 0.027초

고무차륜형 AGT 경량전철 차량용 알루미늄 차체의 개발 (Development on the Aluminum Carbody for Rubber-Tired AGT Vehicle)

  • 김연수;박성혁;백남욱;김동승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1118-1123
    • /
    • 2003
  • Based on the design requirements(size, strength, structure, weight, and etc.) for the rubber-tired AGT vehicle, carbody made of aluminum alloy is designed. The analysis of strength and stiffness is performed in the designed carbody, which results in the modification for optimal shapes and structures. It consists of a under frame, side frame, roof frame, end frame and forehead frame. After the carbody manufactured, tests are performed, which are vertical load test, longitudinal compressive load test, twisting load test, twisting natural frequency measurement, bending natural frequency measurement and 3 points supporting test. Results of them can guarantee a structural safety.

  • PDF

레이저 용접 판재의 T형 단면에의 적용 및 성형성 연구 (Study on the Forming of Tailor Welded T-Section)

  • 김헌영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.159-162
    • /
    • 2000
  • Wrinkles and shape distortions are generated during the forming of B-pillar(or center pillar) which is a component of the automobile side-frame. The stretch flanging modes at the joining part of the B-pillar and the roof-rail or the side-still give rise to forming problems when taior-welded blanks are applied to the side-frames. The authors simplified B-pillar lower part to T shaped section to investigate the forming behaviors. Three of die step locations and two of blank types were tested to show the effects of weld line locations and edge conditions on he forming of tailor welded blanks. The heights of body wrinkles and the strain distribution in the stretch flanged area were measured and compared.

  • PDF

안전성 기반 ODLM(LDT) 설치를 위한 SSI 네트워크 규모 결정 (Decision of SSI Network dimension for Safety based ODLM(LDT) installation)

  • 민근홍;이종우
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.797-802
    • /
    • 2008
  • High Speed Rail Train Control System consists of CTC, IXL and ATC. IXL and ATC perform train control and command via interchanging relevant information between a signal room and CTC. However, it is proved that IXL and ATC are attributed to train delay error since those systems are highly sensitive to trackside conditions. Especially, network error on IXL blocks transmitting signal information to adjacent signal room so that its effects give rise to system overall problems. In order to figure out the measures for which minimizing the occurrence rate of train delay error due to HSR TCS, This paper is performed analysis on communication network structure, the length of SSI network roof and SSI-TFM distance by examining and analyzing the error cases related to IXL in a network aspect.

도시철도차량의 구조체 처짐량에 대한 해석 방안 연구 (A Study on Analysis Method for Structure Deflection of Electric Multiple Units)

  • 정종덕;편장식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.653-658
    • /
    • 2009
  • This paper describes the structural deflection analysis method and result of EMU(Electric Multiple Units). During manufacturing of rail passenger coaches, the underframe is assigned a camber before it is integrated with other major assemblies of shell such as the side panel, the end panel and the roof. The camber of the positive deflection given intentionally to compensate for the sagging so that it remains straight at the maximum load. But some manufacturers have insisted there has no relationship between the camber and the safety or life cycle and they expect to reduce a manufacturing cost without a camber. So this study analyzes whether the camber influences on the safety or life cycle of EMU structure under a full load and regular driving condition. The structural dynamics model for a railway vehicle is introduced.

  • PDF

박판 성형에서의 스프링백 해석과 산업적 응용 (Springback Analyses in Sheet Metal Stamping Processes)

  • 양동열;이상욱;윤정환;유동진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.1-8
    • /
    • 1998
  • The explicit and implicit time integration methods are applied effectively to analyze sheet metal stamping processes, which include the forming stage and the springback stage consecutively. The explicit time integration method has better merits in the forming stage including highly complicated three-dimensional contact conditions. By contrary, the implicit time integration method is better for analyzing springback since the complicated contact conditions are removd and the computing time to get the final static state is short. In this work, brief descriptions of the formulation and the factor study for springback simulations are presented. Further, the simulated results for the S-rail and the roof pannel stamping processes are shown and discussed.

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web

금형보정 모듈을 이용한 초고강도강 자동차부품용 프레스금형의 자동보정 (Automatic Tool Compensation for an UHSS Automotive Component Using a Compensation Module)

  • 이정흠;김세호
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.109-115
    • /
    • 2016
  • In the current study, automatic tool compensation is accomplished by using a finite element stamping analysis for a center roof rail made of UHSS in order to satisfy the specifications for shape accuracy. The initial blank shape is calculated from a finite element inverse analysis and potential forming defects such as tearing and wrinkling are determined by the finite element stamping analysis based on the initial tool shape. The blank shape is optimized to meet the shape requirements of the final product with the stamping analysis, and die compensation is determined with the information about springback. The specifications for shape accuracy were successfully achieved by the proposed die compensation scheme using the finite element stamping analysis. The current study demonstrates that the compensation tendency is similar when the proposed scheme is used or when the compensation is performed by trial and error in the press-shop. This similarity verifies that the automatic compensation scheme can be used effectively in the first stage of tool design especially for components made from UHSS.

SGAFC1180 TRIP강재의 저항 점용접성 평가 (Evaluation of Resistance Spot Weldability of SGAFC1180 Steel)

  • 신석우;이종훈;김대환;박상흡
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.644-649
    • /
    • 2017
  • 자동차 산업에서는 환경 문제와 국제 유가 상승 등으로 인한 차량 경량화에 대한 요구가 증대되고 있다. 이에 따라 알루미늄 합금과 특수 소재 등이 차량 중량을 줄이는데 활용되고 있지만 비용과 강도 측면에서 철강소재를 극복하기 에는 여전히 많은 어려움이 있다. 따라서 강도와 성형성이 좋은 AHSS(Advanced High Strength Steel) 소재의 적용이 증가하고 있다. 특히 운전자 보호를 위한 안전 규제가 강화되면서 센터필러 (Center Pillar), 루프레일 (Roof Rail) 부분에 1.2GPa급 초고강도 강재의 적용이 점차 늘어나고 있으며 이종강재에 대한 자동차 차체 적용 또한 점차 증가하고 있다. 본 연구에서는 SGAFC1180 1.2t 강재의 저항 점용접성 및 용접부의 특성을 파악하였다. 시뮬레이션을 이용하여 너깃의 생성 및 성장 거동을 관찰하였으며 예측 성능은 오차율 10% 이내에서 유사한 경향을 나타내었다. 또한 이러한 거동이 공정변수인 동저항에 미치는 영향을 파악하였고 전단인장강도 및 너깃 직경과의 상관관계를 고찰하였다. 본 연구를 통하여 동저항의 패턴을 인식하여 패턴의 형태에 따라 용접 상태를 분류하고 용접 품질을 판단하는 시스템도 제안할 수 있을 것으로 사료된다.

연약 파쇄 지반내 터널의 굴착.보강 설계 및 안정성 분석 (Excavation Support Design and Stability Analysis of Shallow Tunnel in Heavily Fractured Rock Mass)

  • 신희순;신중호;박찬;한공창;최영학;최용기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.87-92
    • /
    • 2000
  • In excavation of tunnels especially located in shallow depth, it is not rare to meet geological change in excavation progress worse than expected in the initial design stage. This paper present a case study on the re-design of excavation and support system of a shallow tunnel under construction where it meets the unexpected bad geological condition during excavation. The detailed geological investigation shows that the rock mass is heavily weathered and fractured with RMR value less than 20. Considering this geological condition, the design concept is focused on the reinforcement of the ground preceding the excavation of tunnel. Two design patterns, LW-grouting & forepoling with pilot tunnelling method and the steel pipe reinforced grouting method, are suggested. Numerical analysis by FLAC shows that these two patterns give the tunnel and roof ground stable in excavation process while the original design causes severe failure zone around the tunnel and floor heaving. In point of the mechanical stability and the degree of construction, the steel pipe reinforced grouting technique proved to be good for the reinforcement of heavily fractured rock mass in tunnelling. This assessment and design process would be a guide in the construction of tunnels in heavily weathered and fractured rock mass situation.

  • PDF

Evaluation on Low-floor Bus Package Layout from the Perspective of Universal Design

  • Kim, Sun-Woong;Kim, Ji-Yeon;HwangBo, Hwan;Hwang, Bong-Ha;Moon, Yong-Joo;Ji, Young-Gu
    • 대한인간공학회지
    • /
    • 제30권5호
    • /
    • pp.659-669
    • /
    • 2011
  • Objective: The aim of this study is to suggest a package layout guideline for low-floor bus by interview with passengers and observations of their behavior. Background: Increasing attention has been introduced the low-floor bus to be more suitable for use by transportation handicapped. Complex issues are involved in providing comfortable services to all people. We are going to suggest package layout guidelines for more comfortable and suitable travel to all people. Method: The two times of survey and video observation sessions were conducted on low-floor buses in Seoul; (1) a finding of potential issues in the first session, (2) a confirming of issues from the last session. Results: The three of major issues were founded in this study; (1) difficulties in supporting body when standing, (2) difficulties in sitting on front wheel pan seat, (3) difficulties in passing through the aisle. Conclusion: There were clear differences between public and transportation handicapped in using some tools which are used for support body such as roof hand rails, side hand rails, and hand rail rings. Some of design problems were founded to improve from the perspective of ergonomics and universal design. Such differences and design guidelines have to be considered in bus design as well as commercial vehicle. Application: The proposed design guidelines can be used to development of low-floor bus and other public transportations.