• Title/Summary/Keyword: Rail Network Authority

Search Result 77, Processing Time 0.03 seconds

Numerical analysis for semi cut and cover tunnelling method (반개착식 터널 공법에 관한 수치 해석적 연구)

  • Roh, Byoung-Kuk;Park, Jong-Kwan;Baek, Seung-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2013
  • Recently there has been increased interest for the portal and shallow tunnel for an eco-friendly tunneling method. Semi cut & cover tunnel excavation techniques applied to concrete slab and construction and a growing number of cases, but there is no load combinations and arch concrete cross section for the applicable standards. Therefore, in this study, ground conditions and tunnel overburden thickness, thickness of backfill, overburden surface slope angle changes to a variety of conditions in order to propose standards for the semi cut & cover method was performed numerical analysis. Regression analysis method to the analysis of the results of numerical analysis, and linear regression equations derived to classify and organize a rational, economical, and safe semi cut & cover tunneling method based proposed.

Study on Dynamic Characteristics of Structure Approaches by Train Moving Loads (열차이동하중 작용시 구조물 접속부의 동적 거동특성 연구)

  • Eum, Ki Young;Kim, Young Ha;Kim, Jae Wang
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.298-304
    • /
    • 2013
  • This paper systematically analyzes the dynamic effects of structure approaches which are expected to have direct effects on train loads - according to the train's acceleration as the area under consideration is located in a section where acceleration of high speed railway vehicles and the train's operating speed happens. In addition, through an examination of the dynamic train loads, dynamic behavioral characteristics of embedded structures and structure approaches were analyzed and a numerical analysis has been carried out in order to evaluate the performance of track subgrade and the safety of the structure. As a result, we reach the conclusion that the dynamic effects by train loads is low, but somewhat high vertical acceleration occurs.

Development of Design Method for Reinforced Roadbed Considering Plastic Settlement for High-speed Railway (고속철도에서의 소성침하를 고려한 강화노반 설계기법 개발)

  • Choi, Chan-Yong;Choi, Won-Il;Han, Sang-Jae;Jung, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.55-69
    • /
    • 2013
  • An alternative design method of existing methods based on elastic theory the design method of roadbed considering plastic deformation of roadbed and stress-strain at roadbed materials with the cyclic loading of trains passing. The characteristics of the developed design method considering traffic load, number of cyclic loading and resilience modulus of roadbed materials can evaluate elastic strain as well as plastic settlement with allowable design criteria. The proposed design method is applied to standard roadbed section drawing of HONAM high-speed railway considering design conditions such as allowable elastic and plastic settlement, train speed, the tonnage of trains. As a result, required levels of resilience modulus model parameter ($A_E$), unconfined compressive strength, types of soil material were evaluated.

Method for Calculating the Line Capacity Using Computer Aided Simulation (시뮬레이션 기법에 의한 선로용량 산정방법)

  • Choi, Jong-Bin;Lee, Jinsun;Ki, Hyung-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.555-563
    • /
    • 2016
  • Line capacity of railways is a core criterion to decide maximum trips in accordance with traffic demand and a priority in railway investment to improve transportation capability. Particularly, because two operators will start revenue services in the HSR from mid-2016, the line capacity should be carefully calculated and controlled to avoid conflicts between the maximum number of KTXs, and the number needed to guarantee the effective competition of the operators. Meanwhile, there have been many arguments about calculating the line capacity, because this number is affected by the number of trips by train types, stopping pattern and dwell time in each station, journey time, crossing or passing, safety headway between trains, etc. To deal successfully with these kinds of problems, this study proposes a simulation method to calculate the line capacity that considers train operation according to the operator's service policies.

Analysis of Allowable Settlement on Tracks of High Speed Railway (고속철도 궤도 종류에 따른 허용침하량 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom;Seol, Hoon-Il;Han, Young-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.25-34
    • /
    • 2008
  • An application of concrete track is being actively processed for the construction of Korean high speed railway. The concrete track has an advantage in decreasing the maintenance cost, whereas it has much difficulty controlling the long term settlement after settlement occurred. Therefore, the management and control of settlement are very important for the successful construction of concrete track. The purpose of this paper is to verify the allowable settlement between concrete track and ballast track, and piled raft foundation installation effects as settlement reducers for concrete track. Therefore, a series of 3D finite element analyses that take into account the allowable settlement were performed for major parameters such as soil condition, pile installation and loading type. Based on the analysis, it is shown that concrete track causes much smaller settlement than ballast track, and the effect of installation is necessary to effectively reduce the settlement of concrete track.

Performance Evaluation of High Strength Lattice Girder by Structural Analyses and Field Measurements (구조해석과 현장계측에 의한 고강도 격자지보재의 성능 평가)

  • Lee, Jeo-Won;Min, Kyong-Nam;Jeong, Ji-Wook;Roh, Byoung-Kuk;Lee, Sang-Jin;Ahn, Tae-Bong;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • This study examined structural analysis of supports in tunnel and displacement and underground stress of tunnel by measurement, in order to evaluate the performance of high-strength lattice girders developed as a substitute for H-profiles. According to the three-dimensional nonlinear structural analysis results of the tunnel support, the load and displacement relationship between the H-profiles and the high-strength lattice girders showed almost the same behavior, and the maximum load of the high-strength lattice girders were 1.0 to 1.2 times greater than the H-profiles. By the results of the three-dimensional tunnel cross-section analysis of the supports, the axial force was occurred largely in the lower left and right sides of the tunnel, and showed a similar trend to the field test values. In the results of the measurement of the roof settlement and rod extension, the final displacement of the steel arch rib (H-profile) and high-strength lattice girder section in tunnel was converged to a constant value without significant difference within the first management standard of 23.5 mm. According to the results of underground displacement measurement, the final change amount of the two support sections showed a slight displacement change, but converged to a constant value within the first management standard of 10 mm. By the results of measurement of shotcrete stress and steel arch rib stress, the final change amount of the two support sections showed a slight stress change, but converged to a constant value within the first management standard of 81.1 kg/㎠ and 54.2 tonf.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Behavior Characteristics of Underreamed Ground Anchor through Field Test and Numerical Analysis (현장시험 및 수치해석을 통한 확공지압형 앵커의 거동특성)

  • Kim, Gyuiwoong;Ahn, Kwangkuk;Min, Kyongnam;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.37-44
    • /
    • 2013
  • The superiority of bearing ground anchor system has been recognized for the stability and economical efficiency since 1950s in Japan, Europe and etc. The ground anchor introduced in Korea, however, has the structural problem that the tensile strength comes only from the ground frictional force caused by the expansion of the wedge body and it is impossible to evaluate the bearing resistance because the adhering method of the anchor body to hollow wall is not appropriate. In this study, the underreamed ground anchor system was developed so that the bearing pressure of ground anchor can exert as much as possible. And the in-situ tests were performed to evaluate the pullout behavior characteristics and to verify the decreasing effect of the bonded length. The pullout tests were performed with the non-grouted tension condition and grouted tension condition in order to identify the pull-out resistance of each conditions. In addition, it was compared with the results of friction anchor. Finally, the numerical analysis was fulfilled to verify the bearing effect at the bonded part through the detailed modeling by PLAXIS-2D, which is general finite element method analysis program.

The Site Installation Test of Single-Phase MJ81 Switch Point Machine Localization (단상 MJ81 전기선로전환기 국산품의 현장설치시험)

  • Baek, Jong-Hyen;Kim, Yong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3632-3637
    • /
    • 2009
  • In this paper, we describe the performance results of the field installation test which is required to practicalize the single-phase MJ81 Switch Point Machine. This product has passed the certified test through performance improvement of driving parts in order to use 3 phase MJ81 Switch Point Machine, which is localized by taking over technology from Alstom and Cogifer when constructing Seoul-Busan rapid-transit railway, without change of the electrical equipment at track-side in domestic existing lines which single-phase 220V is used. KRRI and Samsung SDS have localized the single-phase MJ81 Switch Point Machine to improve the speed and safety of the conventional lines through the existing railway technology development project. For practicalization of this, we should, however, verify the performance through not only field installation test in real lines but also interface test with the interlocking. In this paper we verify the practicality of the domestic single-phase MJ81 Switch Point Machine through analysis on the performance result of the field installation test as well as the research contents for this test. Thereby, in Feb 2009 we have received an order from the Korea Rail Network Authority and are currently installing the single-phase MJ81 Switch Point Machine.

A Study on the Vertical Temperature Difference of Steel Box Girder Bridge by Field Measurement (실측에 의한 강박스거더교의 상하 온도차에 대한 연구)

  • Lee, Seong-Haeng;Park, Young-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.545-551
    • /
    • 2018
  • For domestic application of the temperature gradient model proposed by foreign design standards, a specimen of steel box girder bridge was fabricated with the following dimensions: 2.0 m width, 2.0 m height and 3.0 m length. Temperature was measured using 24 temperature gauges during the summer of 2016. The reliability of the measured data was verified by comparing the measured air temperature with the ambient air temperature of the Korea Meteorological Administration. Of the measured gauges, four temperature gauges that can be compared with the temperature difference of the Euro code were selected and used to analyze the distribution of the measured temperatures at each point. The reference atmospheric temperature for the selection of the maximum temperature difference was determined by considering the standard error. Maximum and minimum temperatures were calculated from the four selected points and the resulting temperature difference was calculated. The model for the temperature difference in the steel box girder bridge was shown by graphing the temperature difference. Compared to the temperature distribution of the Euro code, the presented temperature difference model showed a temperature difference of $0.9^{\circ}C$ at the top and of $0.3^{\circ}$ to $0.4^{\circ}C$ at the intermediate part. These results suggested that the presented model could be considered relatively similar to the Euro code The calculated standard error coefficient was 2.71 to 2.84 times the standard error and represents a range of values. The proposed temperature difference model may be used to generate basic data for calculating the temperature difference in temperature load design.