• Title/Summary/Keyword: Rahmen structure

Search Result 71, Processing Time 0.021 seconds

Strengthening Effect of CFRP on the R/C Rahmen Bridge (R/C 라멘교에 적용된 CFRP의 보강효과)

  • 심종성;정영수;윤선원;김규선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.328-333
    • /
    • 1996
  • Concrete can be defective for several reasons, including an inadequate design, material selection of workmanship, failure to appreciate the hazards associated with prevailing enviromental conditions. Concrete can also deteriorate or be damaged in use. Thus, it is necessary to evaluate the safety of existing concrete strucutres. On the basis of these reasons, they must be performed for repair or rehabilitation. Presently, strengthening methods of R/C structure used in Korea, are an enlargement of concrete member, strengthening with steel plate or CFRP on the R/C structure. It has been widely estabilished that strengthening effect of CFRP is superior to steel plate in terms of it's lighter unit weight and higher tensile strength. But there are no construction results of CFRP on the civil R/C structure in Korea. The strengthening design technique with CFRP, it's const겨ction, and it's strengthening effect for deteriorated R/C rahmen bridge is introduced in this paper.

  • PDF

A COMPOSITE FRAME CONCEPT FOR THE LONG LIFE OF APARTMENT BUILDINGS

  • Sungho Lee;Sunkuk Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.111-116
    • /
    • 2011
  • Consumers demand an increasing variety of requirements for the residential space as the quality of life improves. However, many apartment buildings with the bearing wall structure cannot meet such demands in Korea. A lot of construction resources are squandered and wastes are created as this type of residential buildings is reconstructed. The life of apartment buildings needs to be extended on the basis of easy remodeling of internal space in order to overcome the limits of the bearing wall structure. This research project aims to propose the Rahmen composite frame concept for the long life of apartment buildings. The Rahmen composite frame is expected to have better structural performance, constructability and economic feasibility than the bearing wall structure.

  • PDF

Evaluation of the Load Carrying Capacity on a Rahmen Bridge with Ultra-high Strength Centrifugally Formed Square Beams as the Superstructure (초고강도 원심성형 각형보를 상부구조로 하는 라멘교의 내하성능 평가 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2024
  • An ultra-high strength prestressed prismatic beam of 100 MPa in compressive strength was developed by increasing the water-tightness of concrete by utilizing centrifugal molding processes without adding expensive admixtures. The centrifugal prismatic PSC beam developed as the superstructure of the avalanche tunnel was constructed on a rahmen bridge in a small local river. In this study, the centrifugal prismatic beam was compared and analyzed based on the results of measurements made through static load tests and the results of numerical analysis of the target structure. The common load-carrying capacity and safety of the rahmen bridge were evaluated. The static·dynamic load tests and finite element analysis results of this bridge were similar, and it was confirmed that the behavior of the centrifugal prismatic beam was well simulated. All centrifugally formed square beams that make up the composite rahmen bridge were evaluated to secure sufficient load carrying capacity under the design live load, and structural reliability was proven by ensuring safety.

In-situ Production Analysis of Composite Precast Concrete Members of Green Frame

  • Lim, Chae-Yeon;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.501-514
    • /
    • 2011
  • Recently, there have been many cases in which the difficulty of repair and replacement of principal elements in the bearing wall structure for apartment buildings, which is a major part of apartment buildings in Korea, has led to the reconstruction of buildings rather than their remodeling. To address this problem, the Korea government now allows a floor area ratio of up to 20 %, and has relaxed the building height limits to encourage the use of a rahmen structure instead of a bearing wall structure. However, since reinforced concrete rahmen structures have many problems, including higher floor height and greater construction cost, a great deal of research into rahmen composite precast concrete structures have been conducted. Green Frame, one of the developed prototypes, is expected to provide economic benefits through in-situ production for precast concrete column and beam. For in-situ production of composite precast concrete members, a detailed plan for production, curing, and installation is needed. However, it needs to be confirmed that the space is sufficient to produce the precast concrete members on-site before planning those activities. Therefore, this study proposes in-situ production analysis of composite precast concrete members of Green Frame with the evaluation of structural safety and available area on the parking structure. The result of this study shows that the in-situ production of precast concrete members is possible through a case study.

A Development of Design Programs for Rahmen Bridge and Box Culvert (라멘교 및 상자형 암거의 자동 설계 프로그램의 개발)

  • 노동오;이경훈;정진환;김충호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.211-218
    • /
    • 2001
  • There are numerous factors in designing the civil-structure even for simple ones. So the designer has to be decide for such conditions and this makes him difficult. Recently, some design programs are used for the design of civil-structure. But even for using the existing design programs, another program is necessary, such as a finite element analysis program. Moreover a few errors may be made in the drafts which must be coincided with the structural calculations. In this study, the design programs for rahmen bridge with single span and box culvert were developed to reduce the design efforts and the manmade errors. These two design programs perform structural analysis, calculations, and making report and draft at a time. In addition, These programs suggest manuals according to standard specifications and references for design. When these programs are used for design, it will be able to reduce the efforts and time of civil engineers.

  • PDF

Case study on Construction and Improvement of Rahmen Structures in Deep Soft Clay Deposit (대심도 연약지반에 설치된 라멘 구조물의 시공 및 보강사례)

  • Lee, Sa-Ik;Choi, Young-Chul;Yoo, Sang-Ho;Kim, Tae-Hyung;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Structures that have constructed in soft clay might suffer from many issues related to consolidation settlement or lateral movement of soft-clay during long-term period. Therefore, it is important to establish proper design and construction processes related to site investigation, soil improvement, construction management, and so on. This case study focused on the construction of the rahmen structure supported by pile foundations. Especially, the structure in this case had been constructed without improving underlying soft clay and before constructing backfill embankment due to the limited construction time and the traffic connection of the old road crossing new highway. Therefore, in order to satisfy the structural stability, the construction processes and countermeasure methods were carefully planned based on the results of preliminary numerical analyses and monitoring of ground behaviors. Through the trial and error precess during the construction, the structures had been successfully constructed.

A Study for Efficient Behavior of Beam-column Joint Structure Using Material Convergence Section Stage and a Temporary Boundary Condition by Strut (재료 융합 단계와 임시 스트럿의 경계조건을 이용한 기둥-보 강결 구조물의 효율적인 거동 연구)

  • Cho, Jae-Hyeung;Song, Jae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.361-374
    • /
    • 2020
  • Recently, small and medium-sized rahmen-type bridges have been developed as a technology that ensures the stability of structural behavior and the safety of use at the same time by using efficient and economical materials that make up the convergence section of reinforced bar, structural steel and concrete. This study is about a rahmen-type structure applied with the installation and dismantling of the strut. It improves the serviceability of the structure by forming multi-points and efficiently applies the convergence section of structural steel and concrete materials to the structural system changes to induce the displacement improvement effect additionally. By constructing mock-up models for the beam-column joint, the displacement was calculated and compared, and this was compared and analyzed by numerical analysis. The final displacement showed an improvement effect of 13.46% to 36.28% based on the vertical displacement of the existing structure without struts through the experiment of the mock-up models. As a result of analysis by numerical analysis method, the displacement improvement effect of 42.89% could be derived.

Structural Safety Evaluation System of Existing low-rise Reinforced Concrete Buildings to Remodeling (리모델링을 위한 기존 저층형 철근콘크리트의 안전성 평가 시스템)

  • 김진수;김창은
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.3
    • /
    • pp.69-80
    • /
    • 2003
  • This study researched problems of safety inspection method and current legislative system for the structure safety evaluation of Rahmen structure affected by remodeling. The elements of weight increase were examined in terms of differences of load moment, shear force, compressive stress and amount of steel before and after remodeling by structure analysis. The thorough examination for impacts of weight increase is indispensable to change of use or extension.

New Rehabilitation Method of Prestressed Concrete Rahmen Bridge with a Hinge at Midspan (프리스트레스트 콘크리트 활절 라멘교의 신보강공법 (상진대교구교적용))

  • 이원표;하성욱;김성호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.979-984
    • /
    • 2001
  • The Sang-Jin bridge constructed by the Free Cantilever Method in 1985 is 4-span concrete rahmen bridge with a hinge at midspan. Due to the effect of creep, shrinkage of concrete and relaxation of tendon, the Sang-Jin bridge exposed the excessive displacement at midspan with the passage of time. In order to improve the load-carrying-capacity and durability of the bridge, needs to repair and rehabilitate the structure emerged. New rehabilitation methods were applied such as external prestressing of concrete box, application of pier pre-camber and steel truss jacking. Structural analysis and several tests including static load test, dynamic load test and ambient vibration test were executed to verify the improvement. The test result showed that the displacement of the midspan was improved by 10mm and it was verified that the stiffness of the bridge was increased. Totally, the load-carrying-capacity of Sang-Jin bridge was increased at least 1.56times which was attributed to the new rehabilitation method.

  • PDF

Analysis of Structural Work Scheduling of Green Frame - Focusing on Apartment buildings - (Green Frame의 골조공사 공기 분석 연구 - 공동주택을 중심으로 -)

  • Lee, Sung-Ho;Kim, Shin-Eun;Kim, Gwang-Hee;Joo, Jin-Kyu;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • Apartment housings that adopt a bearing wall structure design, which account for a majority of the housing units available in Korea, are not free from structural constraints that limit the extension of their service life. The resulting need for reconstruction from the ground up requires a massive consumption of resources and energy, and triggers environmental pollution resulting from construction wastes. As a solution to such issues, the government enforces incentive schemes to promote a remodeling-friendly rahmen structure design. Green Frame, which is a novel concept of composite precast concrete structure to support rahmen structure apartment housing buildings, can address the constraints of bearing wall structure and conventional rahmen structure designs that limit the potential for remodeling projects, while reducing the term of construction. Therefore, this study aims to analyze the characteristics of Green Frame and its absolute term of construction, and compare the terms of frame work construction in apartment housing projects adopting different structural design approaches to illuminate their differences. In the end, Green Frame is found to be capable of reducing the term of construction in apartment housing projects. As the term of construction is a very critical element of a construction project, Green Frame will ultimately prove to be one of the key enablers to ensure the success of apartment housing construction projects.