• 제목/요약/키워드: Radon exposure

검색결과 78건 처리시간 0.035초

Measurement and Spatial Analysis of Uranium-238 and Radon-222 of Soil in Seoul

  • Oh, Dal-Young;Shin, Kyu-Jin;Jeon, Jae-Sik
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.33-40
    • /
    • 2017
  • Identification of radon in soil provides information on the areas at risk for high radon exposure. In this study, we measured uranium-238 and radon-222 concentrations in soil to assess their approximate levels in Seoul. A total of 246 soil samples were taken to analyze uranium with ICP-MS, and 120 measurements of radon in soil were conducted with an in-situ radon detector, Rad7 at a depth of 1-1.5 m. The data were statistically analyzed and mapped, layered with geological classification. The range of uranium in soil was from 0.0 to 8.5 mg/kg with a mean value of 2.2 mg/kg, and the range of radon in soil was from 1,887 to $87,320Bq/m^3$ with a mean value of $18,271Bq/m^3$. The geology had a distinctive relationship to the uranium and radon levels in soil, with the uranium and radon concentrations in soils overlying granite more than double those of soils overlying metamorphic rocks.

Correlation Analysis of Radon Levels using Cluster Algorithm

  • Oh, Myeong Hwan;Jung, Yong Gyu;Kang, Min Soo;Lee, John
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.93-98
    • /
    • 2015
  • Recently, Radon has been gotten attention for problems of Nuclear Generating Station and a variety of nuclear. It is naturally arises that is accumulated in the interior through the soil with radioactive materials. People exposed to indoor a Radon increase the high risks of lung cancer. The data are consisted of regional Country, The Location, Average Radon pCi/L, Geo Mean and Geo S.D etc. The research is experimented using E-M algorithm. The research result appears to make a division of soil distance, regional and cluster. It requires in effort to minimize exposure to people who live in areas with high radon levels. A country must apprise to people about Radon risk and needs to work out measures plan.

건물 층별에 따른 라돈농도에 관한 연구 (The Study of Radon Concentration According to Building of Stars)

  • 김영식
    • 한국환경보건학회지
    • /
    • 제31권1호
    • /
    • pp.94-98
    • /
    • 2005
  • This study was carried out to provide radon concentration and exposure in building. The average radon concentrations of building was measured 1.37 pCi/L in basement, 0.95 pCi/L in 1st layer, 0.74 pCi/L in 2nd layer, 0.56 pCi/L in 3rd layer, and 0.4 pCi/L in 4th layer, respectively. The average radon concentration of basement was measured the higher than any other stairs. Daily average distribution of radon concentrations in building shown that radon concentrations measured in morning at 8hr was the highest value. Monthly average distribution of radon concentrations shown 0.28 ${\pm}$ 0.17 pCi/L in April and 0.82 pCi/L in December that was the highest value. The average concentrations of radon was measured 0.38pCi/L in spring. 0.44 pCi/L in summer, 0.53 pCi/L in autumn, and 0.67 pCi/L in winter, respectively. This result shown that the average concentrations of radon in winter was the higher than any other seasons. That reasons was supposed that effect of number of exchanges and using air conditions was the higher in summer than winter.

인산석고 취급공정에서의 라돈농도 및 유효선량 수준 평가 (Evaluation of Effective Dose and Exposure Level of Radon in Process Handling NORM)

  • 정은교;장재길;김종규;김준범;권지운
    • 한국산업보건학회지
    • /
    • 제28권3호
    • /
    • pp.283-291
    • /
    • 2018
  • Objectives: To monitor the radon concentration level in plants that handle phosphorus rock and produce gypsum board and cement, and evaluate the effective dose considering the effect of radon exposure on the human body. Methods: Airborne radon concentrations were measured using alpha-track radon detectors (${\alpha}$-track, Rn-tech Co., Korea) and continuous monitors (Radon Sentinel 1030, Sun Nuclear Co., USA). Radon concentrations in the air were converted to radon doses using the following equation to evaluate the human effects due to radon. H (mSv/yr) = Radon gas concentration x Equilibrium factor x Occupancy factor x Dose conversion factor. The International Commission on Radiological Protection (ICRP) used $8nSv/(Bq{\cdot}hr/m^3)$ as the dose conversion factor in 2010, but raised it by a factor of four to $33nSv/(Bq{\cdot}hr/m^3)$ in 2017. Results: Radon concentrations and effective doses in fertilizer manufacturing process averaged $14.3(2.7)Bq/m^3$ ($2.0-551.3Bq/m^3$), 0.11-0.54 m㏜/yr depending on the advisory authority and recommendation year, respectively. Radon concentrations in the gypsum-board manufacturing process averaged $14.9Bq/m^3$ at material storage, $11.4Bq/m^3$ at burnability, $8.1Bq/m^3$ at mixing, $10.0Bq/m^3$ at forming, $8.9Bq/m^3$ at drying, $14.7Bq/m^3$ at cutting, and $10.5Bq/m^3$ at shipment. It was low because it did not use phosphate gypsum. Radon concentrations and effective doses in the cement manufacturing process were $23.2Bq/m^3$ in the stowage area, $20.2Bq/m^3$ in the hopper, $16.8Bq/m^3$ in the feeder and $11.9Bq/m^3$ in the cement mill, marking 0.12-0.63 m㏜/yr, respectively. Conclusions: Workers handling phosphorous gypsum directly or indirectly can be assessed as exposed to an annual average radon dose of 0.16 to 2.04 mSv or 0.010 to 0.102 WLM (Working Level Month).

지하수 중 자연방사성물질의 위해성 관리에 대한 고찰 (International Trends in Risk Management of Groundwater Radionuclides)

  • 신동천;김예신;문지영;박화성;김진용;박선구
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권4호
    • /
    • pp.273-284
    • /
    • 2002
  • At present, the health risks associated with the natural radionuclides of ground water have become a concern as potential social problems. However, there are no regulatory actions or control strategies for such risks. Therefore, we have investigated and discussed the risks and associated management strategies for radionuclides in other countries. US EPA has proposed MCL (300 pCi/L) and AMCL (4,000 pCi/L) for radon, and 30 ppb for uranium, 15 pCi/L for gross-alpha and 5 pCi/L for radium as final MCLs. Also, Canada, WHO and European countries have their inherent management levels. Finally, we suggested several criteria for setting guidelines in our countries including exposure related criteria such as geological distribution, occurrence, exposure probability distribution, exposure population and multimedia exposure assessment, acceptable risk, and cost -benefit analysis. The national-scale exposure and risk assessment, and economic analysis should be conducted for producing and aggregating the representative information on these criteria.

한국인의 라돈-222 자핵종 호흡 실효선량당량 평가 (Effective Dose Equivalent due to Inhalation of Indoor Radon-222 Daughters in Korea)

  • 장시영;하정우;이병헌
    • Journal of Radiation Protection and Research
    • /
    • 제16권1호
    • /
    • pp.1-13
    • /
    • 1991
  • 국내 12개 지역의 340여 실내에서 측정한 라돈농도로부터 단순한 수학적 폐선량 평가모형을 이용하여 주민의 실효선량당량을 평가하였다. 수동적 시간적분형 CR-39 라돈컵으로 1990년 4월부터 10월까지 $3{\sim}4$개월 동안 측정 한 실내의 라돈농도는 지역별로 $33.82{\sim}61.42 Bq/m^3$(평균 : $48.90 Bq/m^3$)의 분포를 보였으며, 이로 인한 라돈자핵종의 평형등가라 돈농도$(EEC_{Rn})$는 라돈과 자핵종간의 평형인자의 값 0.4를 적용했을 때 $13.53{\sim}24.57Bq/m^3$(평균 : $19.55 Bq/m^3$)으로 예상되었다. 국제방사선방어위원회의 폐모형에 근거한 본 연구의 폐선량 평가모형에서 유도된 단위 평형등가라돈농도의 피폭당 실효선량당량환산 인자는 $1.07{\times}10^{-5}\;mSv/Bq\;h\;m^{-3}$으로 국제방사선방어위원회나 국제연합 방사선영향평가 과학위원회(UNSCEAR)에서 권고한 값과 잘 일치하였다. 동 선량환산인자와 CR-39 라돈 컵으로 측정 한 실내 의 평균 평형등가라돈농도를 년간 $0.75 m^3/h$의 호흡율로 호흡한 것으로 가정했을 때, 주민이 받는 년평균 폐선량당량 및 실효선량당량은 갹각 20.90 mSv 및 1.25 mSv인 것으로 평가되었다. 동 피폭선량은 국제연합(UNSCEAR)에서 1988년에 발표한 일반인의 년평균 자연방사선피폭 실효선량당량인 2.40mSv의 거의 50%에 상당하였다.

  • PDF

안트라사이트를 혼입한 시멘트 보드의 라돈흡착 특성 (Radon adsorption properties of cement board using anthracite)

  • 경인수;편수정;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.232-233
    • /
    • 2018
  • Among the recent environmental pollution, indoor air pollution has an adverse effect on the health of indoor residents. Radon, one of the causes of indoor air pollution, is released from concrete, gypsum board and asbestos slate among building materials. Radon is a primary carcinogen and is a colorless, tasteless, odorless inert gas that adheres to airborne dust and enters the body through breathing. At this time, there is a risk of developing cancer if the alpha rays from the lononggas entering the human body destroys the lung tissue and is continuously exposed to a high concentration of lonon gas. The World Health Organization (WHO) has emphasized the reduction of radon and its exposure to radon by classifying it as a first-level carcinogen, but many people have not recognized it yet, and the research is underdeveloped. Therefore, this study was carried out to investigate the properties of adsorbed coconut radon to prevent the inflow of radon gas, which is an air pollution source of indoor air, and to prevent inflow into the human body.

  • PDF

국내 라돈 취약가구에 대한 주거공간의 실내 라돈 농도에 관한 연구 (A Study on Indoor Radon Concentration among Vulnerable Households in Korea)

  • 주덕현;박기호;정희원;임형준;복동석;윤동원;민경환;문경덕;김정운;이지민;최원용;김성윤
    • 한국환경보건학회지
    • /
    • 제41권2호
    • /
    • pp.61-70
    • /
    • 2015
  • Objectives: The purpose of this research was to examine radon exposure in terms of the relationship between the living environment and indoor radon concentrations among vulnerable households. Methods: Nationwide, 1,129 subjects were selected using personal questionnaires for adequately understanding the living environment, installation of E-PERM radon gas detectors, and investigation of the structure of the housing. Results: The mean concentration of indoor radon for all subjects was $130.2Bq/m^3$ (GM=101.7), and a total of 438 subjects (38.8%) exceeded the recommended standards ($148Bq/m^3$) for public facilities by the Ministry of the Environment. By location, the highest concentrations ($164.3Bq/m^3$, GM=124.1) were seen in North Chungcheong Province. In the case of the Seoul/Gyeonggi Province metropolitan area, they showed $125.6Bq/m^3$ (GM=105.1) and $118.9Bq/m^3$ (GM=96.5), respectively. By type of housing, indoor radon concentrations in single-family housing were higher than in row/multi-family housing (p<0.01). Although indoor radon concentrations raised in accordance with year of construction (p<0.05), the difference between indoor radon concentrations in underground residences was not observed to be statistically significant (p=0.633). Conclusion: More studies are necessary in the future regarding the difference in indoor radon concentrations that may occur due to different of types of indoor construction, building materials, and the amount of building materials.

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • 제48권2호
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

서울 일부 지하철 공기 중 라돈과 토론 발생 특성 (Characteristics of airborne radon and thoron levels monitored in Seoul Subway stations and circulation lines)

  • 곽현석;김소연;박지훈;최상준;박동욱
    • 한국산업보건학회지
    • /
    • 제29권2호
    • /
    • pp.176-184
    • /
    • 2019
  • Objective: This study aims to characterize airborne radon and thoron levels ($Bq/m^3$) generated from working environments in three subway stations in Seoul. Method: A radon and thoron detector (EQF3220) was used to monitor real-time airborne radon and thoron levels ($Bq/m^3$) and their daughters ($Bq/m^3$) every two hours. They were monitored not only in the driver's cabin of seven circulation lines, but also three offices, platforms, and water pump reservoirs in the three stations. Results: The average levels of radon and thoron were $67.9Bq/m^3$ (range; $7.2-619.4Bq/m^3$) and $44.4Bq/m^3$ (range; $4.3-819.2Bq/m^3$), respectively. Notably, higher than legal airborne radon levels ($600Bq/m^3$) were frequently monitored in the driver's cabin of seven circulation lines. Airborne radon levels monitored in the platforms and administrative offices were found to be over $100Bq/m^3$. The average equilibrium factors (F) were 0.12 and 0.06, respectively. The percentages detected were found to be 84.9 for radon and 72.4 for thoron, respectively. Conclusions: Significant airborne radon and thoron levels were frequently found to be generated in subway facilities including water reservoirs, platforms and driver's cabins. Further study is necessary to thoroughly investigate airborne radon and thoron in all subway stations and to devise proper measures.