• Title/Summary/Keyword: Radix-26 algorithm

Search Result 3, Processing Time 0.021 seconds

Novel Radix-26 DF IFFT Processor with Low Computational Complexity (연산복잡도가 적은 radix-26 FFT 프로세서)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Fast Fourier transform (FFT) processors have been widely used in various application such as communications, image, and biomedical signal processing. Especially, high-performance and low-power FFT processing is indispensable in OFDM-based communication systems. This paper presents a novel radix-26 FFT algorithm with low computational complexity and high hardware efficiency. Applying a 7-dimensional index mapping, the twiddle factor is decomposed and then radix-26 FFT algorithm is derived. The proposed algorithm has a simple twiddle factor sequence and a small number of complex multiplications, which can reduce the memory size for storing the twiddle factor. When the coefficient of twiddle factor is small, complex constant multipliers can be used efficiently instead of complex multipliers. Complex constant multipliers can be designed more efficiently using canonic signed digit (CSD) and common subexpression elimination (CSE) algorithm. An efficient complex constant multiplier design method for the twiddle factor multiplication used in the proposed radix-26 algorithm is proposed applying CSD and CSE algorithm. To evaluate performance of the previous and the proposed methods, 256-point single-path delay feedback (SDF) FFT is designed and synthesized into FPGA. The proposed algorithm uses about 10% less hardware than the previous algorithm.

A High-Performance ECC Processor Supporting NIST P-521 Elliptic Curve (NIST P-521 타원곡선을 지원하는 고성능 ECC 프로세서)

  • Yang, Hyeon-Jun;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.548-555
    • /
    • 2022
  • This paper describes the hardware implementation of elliptic curve cryptography (ECC) used as a core operation in elliptic curve digital signature algorithm (ECDSA). The ECC processor supports eight operation modes (four point operations, four modular operations) on the NIST P-521 curve. In order to minimize computation complexity required for point scalar multiplication (PSM), the radix-4 Booth encoding scheme and modified Jacobian coordinate system were adopted, which was based on the complexity analysis for five PSM algorithms and four different coordinate systems. Modular multiplication was implemented using a modified 3-Way Toom-Cook multiplication and a modified fast reduction algorithm. The ECC processor was implemented on xczu7ev FPGA device to verify hardware operation. Hardware resources of 101,921 LUTs, 18,357 flip-flops and 101 DSP blocks were used, and it was evaluated that about 370 PSM operations per second were achieved at a maximum operation clock frequency of 45 MHz.

Performance Evaluation of TDX-families DTMF Receiver with the QFT (QFT를 이용한 TDX-계열 교환기용 DTMF 수신기의 성능평가)

  • 윤달환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11C
    • /
    • pp.133-139
    • /
    • 2001
  • The economical detection of dual-tone multi-frequency(DTMF) signals is an important factor when developing cost-effective telecommunication equipment. Each channel has independently a DTMF receiver, and it informs the detected signal to processors. In order to detect the DTMF signals, this paper analyze the power spectra of the DTMF receiver by using the QFT algorithm. As experimental result, by analyzing 2$\^$M/ real data in terms of ITU-T specification, it show that the QFT algorithm improve the performance of the DTMF receiver and can save memory waste and can the real-time processing.

  • PDF