• Title/Summary/Keyword: Radius of Movement

Search Result 103, Processing Time 0.028 seconds

Prediction Study on Major Movement Paths of Otters in the Ansim-wetland Using EN-Simulator (EN-Simulator를 활용한 안심습지 일원 수달의 주요 이동경로 예측 연구)

  • Shin, Gee-Hoon;Seo, Bo-Yong;Rho, Paikho;Kim, Ji-Young;Han, Sung-Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2021
  • In this study, we performed a Random Walker analysis to predict the Major Movement Paths of otters. The scope of the research was a simulation analysis with a radius of 7.5 km set as the final range centered on the Ansim-wetland in Daegu City, and a field survey was used to verify the model. The number of virtual otters was set to 1,000, the number of moving steps was set to 1,000 steps per grid, and simulations were performed on a total of 841 grids. As a result of the analysis, an average of 147.6 objects arrived at the boundary point under the condition of an interval of 50 m. As a result of the simulation verification, 8 points (13.1%) were found in the area where the movement probability was very high, and 9 points (14.8%) were found in the area where the movement probability was high. On the other hand, in areas with low movement paths probabilities, there were 8 points (13.1%) in low areas and 4 points (6.6%) in very low areas. Simulation verification results In areas with high otter values, the actual otter format probability was particularly high. In addition, as a result of investigating the correlation with the otter appearance point according to the unit area of the evaluation star of the movement probability, it seems that 6.8 traces were found per unit area in the area where the movement probability is the highest. In areas where the probability of movement is low, analysis was performed at 0.1 points. On the side where otters use the major movement paths of the river area, the normal level was exceeded, and as a result, in the area, 23 (63.9%), many form traces were found, along the major movement paths of the simulation. It turned out that the actual otter inhabits. The EN-Simulator analysis can predict how spatial properties affect the likelihood of major movement paths selection, and the analytical values are used to utilize additional habitats within the major movement paths. It is judged that it can be used as basic data such as to grasp the danger area of road kill in advance and prevent it.

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

Effects of Base Curve on Fitting with the current Soft Contact Lenses (베이스 커브에 의한 콘택트렌즈 피팅 효과)

  • Choe, Oh Mok;Gang, Myoung Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.65-72
    • /
    • 2000
  • The study investigated the effects of base curve radius art the fit of thin, mid-water contact lenses. It was found that central corneal curvature(as measured with the keratometer) was not predictive of the best fitting base curve. Proper lens fit may be the single most important factor that ultimately determines the success of contact lens wear. Comfort, vision, and physiological response are all dependent on the fit of the lens. The percent of optimal fits was highest with the 8.4 mm base curve lens for all three ranges of keratometry values. When fit with the 8.4 mm lens. For most eyes, fitting a flatter lens led to greater decentration, decreased comfort, and no increase in lens movement. The 8.4 mm lens was found to provide on "optimal" fit in over 60% of eyes tested and a fit of "good" or "better" in nearly 90% of eyes tested. Comparisons of different manufactures' lens found that similiar lenses do not always fit in the same way due to subtle design and production differences. Therefore, different products may require different base curve radii to fit the same patient. This is even true when water content, center thickness, and diameter are approximately the same. A praditioner fitting a new patient in this lenses should begin with the 8.4 mm base curve radius.

  • PDF

Strength Evaluation of Sin91e-Radius Total Knee Replacement (TKR) (인공무릎관절의 단축법위 회전시 근력정가)

  • Wan, Jin-Young;Sub, Kwak-Yi
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.484-489
    • /
    • 2004
  • Artificial joint replacement is one of the major surgical advances of the 21th century. The primary purpose of a TKA (Total Knee Arthroplasty) is to restore normal knee Auction. Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from a chair or climbing stairs;(b) allow the same range of motion as an complete knee; and (c) provide adequate knee joint stability. Four individuals (2 peoples after surgery one year and 2 peoples after surgery three years) participated in this study. All they were prescreened for health and functional status by the same surgeon who performed the operations. Two days of accommodation practice occurred prior to the actual strength testing. The isometric strength (KIN-COM III) of the quadriceps and hamstring were measured at 60$^\circ$ and 30$^\circ$ of knee flexion, respectively. During isokinetic concentric testing, the range of motion was between 10$^\circ$ to 80$^\circ$ of knee flexion (stand-to-sit) and extension (sit-to-stand). for a given test, the trial exhibiting maximum torque was analyzed. A 16-channel MYOPACTM EMG system (Run Technologies, Inc.) was used to collect the differential input surface electromyographic (EMG) signals of the vastus medialis (VM), vastus lateralis(VL), rectus femoris (RF) during sit-to-stand and stand-to-sit tests. Disposable electrodes (Blue SensorTM, Medicotest, Inc.) were used to collect the EMG signals. The results were as follows; 1. Less maximum concentric (16% and 21% less for 1 yew man and 3 years mm, respectively) and isometric (12% and 29%, respectively) quadriceps torque for both participants. 2.14% less maximum hamstrings concentric torque for 1 year man but 16% greater torque for 3 years mm. However, 1 year man had similar hamstring isometric peak torque for both knees. 3. Less quadriceps co-contraction by 1 year man except for the VM at 10$^\circ$-20$^\circ$ and 30$^\circ$-50$^\circ$ range of knee flexion.

Comparison of Newton's and Euler's Algorithm in a Compound Pendulum (복합진자 모형의 뉴튼.오일러 알고리즘 비교)

  • Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Primary type of swinging motion in human movement is that which is characteristic of a pendulum. The two types of pendulums are identified as simple and compound. A simple pendulum consist of a small body suspended by a relatively long cord. Its total mass is contained within the bob. The cord is not considered to have mass. A compound pendulum, on the other hand, is any pendulum such as the human body swinging by hands from a horizontal bar. Therefore a compound pendulum depicts important motions that are harmonic, periodic, and oscillatory. In this paper one discusses and compares two algorithms of Newton's method(F = m a) and Euler's method (M = $I{\times}{\alpha}$) in compound pendulum. Through exercise model such as human body with weight(m = 50 kg), body length(L = 1.5m), and center of gravity ($L_c$ = 0.4119L) from proximal end swinging by hands from a horizontal bar, one finds kinematic variables(angle displacement / velocity / acceleration), and simulates kinematic variables by changing body lengths and body mass. BSP by Clauser et al.(1969) & Chandler et al.(1975) is used to find moment of inertia of the compound pendulum. The radius of gyration about center of gravity (CoG) is $k_c\;=\;K_c{\times}L$ (단, k= radius of gyration, K= radius of gyration /segment length), and then moment of inertia about center of gravity(CoG) becomes $I_c\;=\;m\;k_c^2$. Finally, moment of inertia about Z-axis by parallel theorem becomes $I_o\;=\;I_c\;+\;m\;k^2$. The two-order ordinary differential equations of models are solved by ND function of numeric analysis method in Mathematica5.1. The results are as follows; First, The complexity of Newton's method is much more complex than that of Euler's method Second, one could be find kinematic variables according to changing body lengths(L = 1.3 / 1.7 m) and periods are increased by body length increment(L = 1.3 / 1.5 / 1.7 m). Third, one could be find that periods are not changing by means of changing mass(m = 50 / 55 / 60 kg). Conclusively, one is intended to meditate the possibility of applying a compound pendulum to sports(balling, golf, gymnastics and so on) necessary swinging motions. Further improvements to the study could be to apply Euler's method to real motions and one would be able to develop the simulator.

A Biomechanical Comparative Analysis of the Multi-Radius Total Knee Arthroplastry System for Go up Stair and Go down Stair (계단 오르기와 내리기 동안 다축범위(multi-radius) 무릎인공관절 수술자의 운동역학적 비교분석)

  • Jin, Young-Wan;Yoo, Byung-In;Kawk, Yi-Sub
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.31-41
    • /
    • 2006
  • The primary purpose of a TKA is to restore normal knee function Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from climbing stairs; (b) provide adequate knee joint stability. A 16-channel MyoResearch XP EMG system was used to collect the differential input surface electromyography signals VM, VL, RF, BF, ST during climbing/descending stair tests. A Peak Motion Measurement System was used to collect the kinematic and kinetic data. AKIN-COM Ill isokinetic dynamometer was used for EMG of VM, VL, RF, BF and ST during maximal voluntary contraction. I Quadriceps EMG results for the VM of the passed 1year group limb demonstrated significant less RMS EMG than that of the passed 3year group limb $60^{\circ}-15^{\circ}$ of knee flexion(p<0.05). The VL of the passed 1year group limb also demonstrated significants less RMS EMG than that of the passed 3year group limb from $60^{\circ}-45^{\circ}$ of knee flexion(p<0.05). Similar to the VM and VL, the RF of the passed 1year group limb showed less RMS EMG than that of the passed 3year group limb from $60^{\circ}-30^{\circ}$ do knee flexion(p<0.05). Hamstring EMG results for the BF of the passed 1year group limb demonstrated less RMS EMG than that of the passed 3year group limb from $75^{\circ}-15^{\circ}$ of knee flexion(p<0.05). The passed 1year group limb tended to have less ADD displacement(p<0.071) than that of the passed 3year group limb. There was no significant difference of the ABD displacement between the passed 1year group and the passed 3year group limbs(p<0.73). The passed 3year group used compensatory adaptation movement strategies to compensate for the strength deficit of passed 3year group limbs. The passed 3year group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. The passe 3year group limb might have an unstable knee joint in the medio-Iateral direction during the climbing/descending by showing a tendency of more ADD displacement and greater hamming co-activation EMG than the passed 1year group limbs. The TKA design was not able to help the knee joint to produce adequate knee extension moment with less quadriceps muscle effort. I think that old man needs continuous exercise for muscle strength.

Efficiency Analysis of Tower Crane Lifting Work for Project Management of Construction (건축공사의 공정관리를 위한 타워크레인 양중 효율성 분석)

  • Bae, Jeong-Hyeon;Kim, Ki-Hyuk;Lee, Donghoon
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Building Construction projects are getting higher and larger. Therefore, the use of Tower Crane, which is more productive than any other lifting plan shows a trend of continuous increases. However as equipment for transporting heavy goods, are is too expensive for the monthly rent and used inefficiently for construction. site so it is analyzed that it has problems of reducing productivity and efficiency of lifting work. Inefficient situations are arising like poor communications between operator and worker, occurrence of blind spots, securing the shortest distance of fire during movement after lifting plan, influences of weather, location of materials, movement radius of tower crane by each locations and ever-changing working environments. Therefore, in this study, we first made a list of tower cranes that are inefficiently used at the site, and then we made a checklist. After that, through field visits, we derived checklist for Tower Crane to comprehensive data value.

Field investigation and numerical study of ground movement due to pipe pile wall installation in reclaimed land

  • Hu Lu;Rui-Wang Yu;Chao Shi;Wei-Wei Pei
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.397-408
    • /
    • 2023
  • Pipe pile walls are commonly used as retaining structures for excavation projects, particularly in densely populated coastal cities such as Hong Kong. Pipe pile walls are preferred in reclaimed land due to their cost-effectiveness and convenience for installation. However, the pre-bored piling techniques used to install pipe piles can cause significant ground disturbance, posing risks to nearby sensitive structures. This study reports a well-documented case history in a reclamation site, and it was found that pipe piling could induce ground settlement of up to 100 mm. Statutory design submissions in Hong Kong typically specify a ground settlement alarm level of 10 mm, which is significantly lower than the actual settlement observed in this study. In addition, lateral soil movement of approximately 70 mm was detected in the marine deposit. The lateral soil displacement in the marine deposit was found to be up to 3.4 and 3.1 times that of sand fill and CDG, respectively, mainly due to the relatively low stiffness of the marine deposit. Based on the monitoring data and site-investigation data, a 3D numerical analysis was established to back-analyze soil movements due to the installation of the pipe pile wall. The comparison between measured and computed results indicates that the equivalent ground loss ratio is 20%, 40%, and 20% for the fill, marine deposit and CDG, respectively. The maximum ground settlement increases with an increase in the ground loss ratio of the marine deposit, whereas the associated influence radius remains stationary at 1.2 times the pipe pile wall depth (H). The maximum ground settlement increases rapidly when the thickness of marine deposit is less than 0.32H, particularly for the ground loss ratio of larger than 40%. This study provides new insights into the pipe piling construction in reclamation sites.

The Ceomorphic Development of Alluvial Fans in Cheongdo Basin, Gyeongsangbuk-do( Prevince), South Korea (경북 청도분지의 선상지 지형발달)

  • Hwang Sang-Ill
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.514-527
    • /
    • 2004
  • We investigated the distribution and geomorphic development of alluvial fans at Cheongdo- and Hweyang-eup(town) in the Cheongdo Basin, Gyeongsangbuk-do(Province) of Korea. The alluvial fans of study area are formed confluently to the E-W direction at the northern slope of the Mt. Namsan(840 m). They are classified into Higher surface, Middle surface, and Lower surface according to a relative height to a river bed. And the older alluvial fan is, the deeper gravel in the stream deposits is weathered. The magnitude of each surface composing of confluent fans is related to that of the drainage basin. So called fan-basin system of magnitude on the study area is on the positive(+) relation in the study area. The large fans over 1km in radius are found on the basin of andesite rock which is resistant to the weathering and erosion. Moreover there is no tectonic movement in the basin. It means the most important element influenced on the fan formation is not tectonic movement, but the Quaternary climatic change, which is the periglacial climate alternating glacial and interglacial stages during the Quaternary. Therefore alluvial fans would distribute in Korea overall influenced by the Quaternary climatic change.

Design and Performance Analysis of Real-Time Hybrid Position Tracking Service System using IEEE 802.15.4/4a in the Multi-Floor Building (복합환경에서 IEEE 802.15.4/4a를 이용한 하이브리드 실시간 위치추적 서비스 시스템 설계 및 성능분석)

  • Kim, Myung-Hwan;Chung, Yeong-Jee
    • Journal of Information Technology Services
    • /
    • v.10 no.1
    • /
    • pp.105-116
    • /
    • 2011
  • With recent spotlight on the, uniquitous computing technology, the need for object of indentification and location infrastructure has increased. Such GPS technolgy must utilize IEEE 802.15.4 Zigbee used for existing wireless sensor network infra as a basice element for user's context-awareness in a uniquitous environement, for effectiveness.Such real-time GPS service is provided in the internal environment where the user would actually are and most high-rise buildlings apply. Underthe assumption, the real-time GPS technology is seperated by each floor, and signals do not get transmitted to other floors, the application on one floor within the high-rise buildling was conducted. This study intends to suggest a floor detection algorithm using IEE 802.15.3/Zigbee's RSSI which supports the accuracy within a couple of meters for the user's the movement between the floors in high-rise buildings in a complex environment. It proposes an floor detection algorithm using IEEE 802.15.4/Zigbee's RSSI which provides accuracy within a radius of few meters for the users movement between the floors for real-time location tracking within high-rise building in a cmoplex environment. Furthermore, for more accurate real-time location tracking, it suggests an algorithm for real-time location tracking using IEEE 802.15.4a/Zigbee's CSS technology based on triangulation. Based on the suggested algorithm, it designs a hybrid real-time location tracking service system in a high-rise buildling and test its functions.