• Title/Summary/Keyword: Radish seed

Search Result 102, Processing Time 0.023 seconds

Evaluation of Hot Water Treatment for Disinfection of Vegetable Seeds for Organic Farming (채소 종자별 온탕침지 종자소독 효과검정)

  • Lee, Ji-Hyun;Shen, Shun-Shan;Park, Yong-Ju;Ryu, Kyung-Yul;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2007
  • Hot water treatment that is the most appropriate seed disinfection method for organic vegetable farming was evaluated in this study. Among the leafy vegetable seeds lettuce that was the most sensitive to hot water was suitable to treat at $45^{\circ}C$ for 25 min, while Chinese cabbage and radish seeds were optimally treated at $50^{\circ}C$ for 25 min. The treatments resulted in similar or higher seed germination rate than non-treated seeds and promoted plant growth. In addition, fungi such as Alternaria, Aspergillus, Penicillium, or Mucor grown on the seeds were suppressed over 90% and the bacterial growth on lettuce seeds reduced 98.5% by the treatment. Among the fruit vegetable seeds pumpkin that was vulnerable to hot water was suitable to treat at $50^{\circ}C$ for 15 min, while cucumber and hot pepper seeds revealed optimum treatment at $50^{\circ}C$ for 25 min as chinese cabbage and radish. The treatment also showed similar or higher seed germination rate and growth than non-treated seeds. Furthermore, fungi such as Rhizopus, Aspergillus, Penicillium or Mucor grown on the seeds reduced from 72.0% to 95.4%. The bacterial growth on cucumber and red pepper seeds was suppressed from 65.5% to 86.0% by the treatment. Results indicated that the hot water treatment is practical for disinfection of organic vegetable seeds and the optimum temperature and soaking time varied among the seeds.

Effects of Seed Decontamination Treatments on Germination of Red Radish Seeds during Presoaking (적무 새싹종자의 소독제 처리에 의한 발아 시 미생물 제어효과)

  • Jun, So-Yun;Kim, Yun-Hwa;Sung, Jung-Min;Jeong, Jin-Woong;Moon, Kwang-Deog;Kwon, Joong-Ho;Lee, Yeon-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1528-1534
    • /
    • 2010
  • The antibacterial effects of seed decontamination during presoaking before sprouting as an intervention step for eliminating foodborne pathogens on red radish seeds were evaluated. The effect of seed decontamination on seed germination rate was also evaluated. Red radish seeds were inoculated (at a level of 3 to 4 log CFU/g) with Listeria monocytogenes ATCC 19111 and decontaminated with 20,000 ppm calcium hypochlorite, 50 and 100 ppm chlorinated water, acidic electrolyzed water, low-alkaline electrolyzed water, and ozonated water for 6 hours. The control seeds were immersed in distilled water. The germination rate was measured on each treatment for 48 hours. Treatments with 20,000 ppm calcium hypochlorite, acidic and low-alkaline electrolyzed water were more effective than treatments with chlorinated water and ozonated water. Immersion in 20,000 ppm calcium hypochlorite resulted in the largest microbial reduction (more than 3 logs). Treatments with acidic and low-alkaline electrolyzed water reduced APC by 3 logs and L. monocytogenes counts by 2 logs. After sprouting, APC and L. monocytogenes counts on seeds treated with 20,000 ppm calcium hypochlorite, acidic and low-alkaline electrolyzed water were significantly lower than the control. The germination rate ranged from 93.5% to 97.7% except for 20,000 ppm calcium hypochlorite (from 82.3% to 84.8%) after 48 hours. Although the treatments tested in this study will not eliminate L. monocytogenes on inoculated red radish seeds, the results show that rapid growth of surviving cells during sprouting could be prevented if red radish seeds are given a presoak treatment used in combination with a disinfectant treatment of irrigation water.

Effects of Improved Heat Treatment on Microbial Reduction and Germination in Sprout Vegetable Seeds (열처리 조건개선이 다양한 새싹채소 종자의 미생물 저감화 및 발아에 미치는 영향)

  • Yun, Hye-Jeong;Park, Kyeong-Hun;Hong, Eun-Kyung;Kim, Tae-Hun;Kim, Se-Ri;Kim, Won-Il;Yun, Jong-Chul;Hong, Moo-Ki;Ryu, Kyoung-Yul
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.611-617
    • /
    • 2011
  • This study investigated the germination and reduction of microbial population in domestic (radish, Chinese cabbage, and vitamin) and imported (radish and red cabbage) sprout seeds by heat treatment (40, 50, 60, and 70$^{\circ}C$ for 15 min or 30 min). The germination ratio (define the ratio) was 45-97% at 24 h after treatment <60$^{\circ}C$ and was decreased at 70$^{\circ}C$. In domestic radish seed, total aerobic bacteria were decrease by approximately 1.71 log CFU/g after heat treatment at 70$^{\circ}C$ for 30 min and viable coliforms were decreased to under the detection limit at temperatures over 60$^{\circ}C$. Decrease of total aerobic bacteria and coliforms in domestic Chinese cabbage seed was 1.23-1.34 and 2.77 log CFU/g, respectively, after heat treatment over 60$^{\circ}C$. In domestic vitamin seed, total aerobic bacteria were decreased by about 0.3 log CFU/g at 70$^{\circ}C$ for 15 min. In imported radish seed, total aerobic bacteria were decreased 2.12-2.30 log CFU/g after heat treatment over 60$^{\circ}C$. Total aerobic bacteria in imported red cabbage seed were reduced by 0.66-0.84 log CFU/g after heat treatment over 40$^{\circ}C$ and coliforms were undetectable. In case of Bacillus cereus, there was no significant difference by heat treatment in any sample. Staphylococcus aureus and Salmonella sp. were not detected at the detection limit in any tested seeds at any temperature.

Effects of Gamma Radiation on the Germination, Growth and Enzyme (peroxidase and catalase) Activities of Old Vegetable Seed (묵은 채소 종자의 발아와 생육 및 효소활성에 미치는 $\gamma$선의 영향)

  • 김재성;백명화;김동희;이영근;정규회
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • To determine the effect of low dose gamma radiation on the germination and enzyme activities, seeds of Chinese cabbage (Brassica compestris L. cv. Hanyoreum) and radish (Raphanus sativus L. cv. Chungsukoungzoung) were irradiated at the dose of 2-50 Gy. The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage. The germination rate of Chinese cabbage was high at 2 Gy and 8 Gy irradiation group and that of radish was high at 2 Gy, 6 Gy and 10 Gy irradiation group. Growth of both seedlings of Chinese cabbage and radish increased positively in low dose irradiation group. The height of Chinese cabbage was noticeably high at 4 Gy and 10 Gy irradiation group and that of radish at 6 Gy irradiation group. The protein contents of seedlings from seeds irradiated with the low dose gamma radiation was higher than the control, especially at the early stage. The enzyme activities of seedlings from seeds irradiated with the low dose gamma radiation was high at 4 Gy and 10 Gy irradiation group. These results suggest that the germination, growth and enzyme activities of old vegetable seeds could be promoted by the low dose gamma radiation.

  • PDF

Comparison of Glucosinolate Contents in Leaves and Roots of Radish (Raphanus spp.)

  • Ko, Ho-Cheol;Sung, Jung-Sook;Hur, On-Sook;Baek, Hyung-Jin;Jeon, Young-ah;Luitel, Binod Prasad;Ryu, Kyoung-Yul;Kim, Jung-Bong;Rhee, Ju-Hee
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.579-589
    • /
    • 2017
  • Glucosinolates (GSLs), beneficial secondary metabolites for human health are abundantly present in radish vegetable. Radish is a member of Brassicaceae family and its seed, leaf and root contain very important GSLs. The objective of this study was to determine the variation of individual and total GSL contents in leaves and roots of 44 radish (Raphanus spp.) germplasm (26 R. sativus L., 3 R. raphanistrum, and 15 R. sativus L. var. raphanistroides Makino), and compare the GSL contents between leaves and roots among three Raphanus species. Thirteen GSLs were identified, being the glucoraphasatin (GRS) and glucobrassicin (GBS) the most abundant aliphatic and indolyl GSLs in both the leaves and roots. Variation in individual and total GSL contents was found among the germplasm of three Raphanus species. The GRS content was higher in roots than that of leaves in all three Raphanus species but the GBS content was higher in leaves than roots. GRS was represented 87.0%, 92.7% and 94.7% of the total GSL in roots of R. sativus L., R. raphanistrum and R. sativus L. var. raphanistroides (Makino) germplasm, respectively. Germplasm of R. raphanistrum exhibited the highest (average, $79.5{\mu}mol/g\;dw$) total GSL with a ranged from 62.7 to $92.9{\mu}mol/g\;dw$. The germplasm IT119288, Joseonmu and IT119262 from R. sativus L., RA 504 and K046542 from R. raphanistrum, and Gyeongju-2003-32 (G2003-32) and IT302373 from R. sativus L. var. raphanistroides (Makino) had high total GSL contents and these could be good candidates for developing the functional compounds-rich varieties in radish breeding program.

Development of Gene-based Markers for the Allelic Selection of the Restorer-of-fertility Gene, Rfo, in Radish (Raphanus sativus)

  • Kim, Sunggil;Lim, Heerae;Cho, Kang-Hee;Park, Pue Hee;Park, Suhyung;Sung, Soon-Kee;Oh, Daegeun;Kim, Ki-Taek
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.194-204
    • /
    • 2009
  • Cytoplasmic male sterility (CMS) and fertility restoration have been utilized as valuable tools for $F_1$-hybrid seed production in many crops despite laborious breeding processes. Molecular markers for the selection of CMS-related genes help reduce the expenses and breeding times. A previously reported genomic region containing the Ppr-B gene, which is responsible for restoration of fertility and corresponds to the Rfo locus, was used to develop gene-based or so-called "functional" markers for allelic selection of the restorer-of-fertility gene (Rfo) in $F_1$-hybrid breeding of radish (Raphanus sativus L.) Polymorphic sequences among Rfo alleles of diverse breeding lines of radish were examined by sequencing the Ppr-B alleles. However, presence of Ppr-B homolog, designated as Ppr-D, interferes on specific PCR amplification of Ppr-B in certain breeding lines. The organization of Ppr-D, resolved by genome walking, revealed extended homology with Ppr-B even in the promoter region. Interestingly, PCR amplification of Ppr-D was repeatedly unsuccessful in certain breeding lines implying the lack of Ppr-D in these radishes. Ppr-B could only be successfully amplified for analysis through designing primers based on the sequences unique to Ppr-B that exclude interference from Ppr-D gene. Four variants of Rfo alleles were identified from 20 breeding lines. A combination of three molecular markers was developed in order to genotype the Rfo locus based on polymorphisms among four different variants. These markers will be useful in facilitating $F_1$-hybrid cultivar development in radish.

Application of SCAR markers to self-incompatibility genotyping in breeding lines of radish (Raphanus sativus L.)

  • Chung, Hee;Kim, Su;Park, HanYong;Kim, Ki-Taek
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • Self-incompatibility (SI) prevents self-fertilization by inhibiting the pollen tube growth of self-pollen. Molecular analysis has revealed that the S locus comprises a number of genes, such as the S-locus glycoprotein (SLG), the S-locus receptor kinase (SRK), and SP11 (SCR). Although molecular markers related to those genes have been developed, a simple S-haplotype detecting method has not been reported due to the highly polymorphic and relatively small coding regions. In this study, the sequence characterized amplified region (SCAR) markers were used to establish an efficient radish genotyping method. We identified the S-haplotypes of 192 radish accessions using 19 different markers, which proved to be highly reliable. The accessions were assigned to 17 types of S-haplotypes, including 8 types of SRKs and 9 types of SLGs. Since the developed SCAR markers are based on their gene sequences, we could easily identify the S-haplotypes by a single specific band, with the highest frequencies detected for SLG 5, SRK 1, and SLG 1, in order. Among the tested markers, the SLG 1, SRK 1, and SRK 5 markers exhibited high reliability, compared to phenotypic results. Furthermore, we identified the seven types of unreported SLGs using SLG Class -I and -II specific markers. Although the developed SCAR markers still need to be improved for the genotyping of all S-haplotypes, these markers could be helpful for monitoring inbred lines, and for developing the MAS in radish breeding programs.

Antifungal and Plant Growth Promotion Activities of Recombinant Defensin Proteins from the Seed of Korean Radish (Raphanus sativus L.)

  • Hwang, Cher-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.435-441
    • /
    • 2009
  • In the present study, we analyzed the defensin protein deduced from Korean radish (Raphanus sativus L.) seeds.To express the genes in E. coli, we constructed a recombinant expression vector with a defensin gene, named rKRs-AFP gene isolated from Korean radish seeds. Over expressed rKRs-AFP proteins was separated by SDS-PAGE to determine the purity, and protein concentration was determined by the Bradford method. Antifungal activity was assessed by disk assay method against the tested fungi. As a result, when 500 mL of cell culture were disrupted by sonicator, 32.5 mg total proteins were obtained. The purified protein showed a single band on SDS-PAGE with estimated molecular weight about 6 KDa, consistent with the molecular mass calculated from the deduced amino acid sequence. The purified rKRs-AFP protein showed remarkable antifungal activities against several fungi including Aspergillus niger, Botrytis cinerea causing the gray mold disease, and Candida albicans. In field tests using the purified rKRs-AFP protein, the protein showed the reducing activity of disease spot and the mitigating effect of spreading of disease like agrichemicals. The immuno-assay of rKRs-AFP protein showed that the purified protein entirely accumulated at B. cinerea cytoplasm through the hyphal septa shown by fluorescence imaging. There was no fluorescence inside the cell, when the hypha was incubated without the protein. These all results indicate that the recombinant rKRs-AFP proteins can be utilized as a potential antifungal drug to control harmful plant fungal pathogens.

Screening of Pesticidal Active Compounds from Various Domestic Wild Plants (국내 자생 식물자원 중 농약활성물질 탐색)

  • Kwon, Oh-Kyung;Lim, Soo-Kil;Seong, Ki-Suk;Choi, Byung-Ryul
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.347-355
    • /
    • 1997
  • For the selection of plants contained pesticidal active conpounds, 31 families 59 species of native plants were collected and biological activites of their crude extracts against brown planthopper (Nilaparvata lugens), Xanthomonas oryzae pv. oryzae and allelopathy were examined. Among the screened plants, the crude extracts from the leaves of Ricinus communis and Sophora angustifolia showed 100% and 82% of mortality on brown planthopper at the concentration of 1% (w/v) respectively. Mixed crude extracts of Sophora angustifolia root and Melia azedarach seed exhibited 128${\sim}$155% of synergistic effects on the mortality of brown planthopper. In case of fungicidal activity, the crude extracts from the leaves of 8 plants including Chrysanthemum indicum were inhibitory of the growth of Xanthomonas oryzae pv. oryzae at 1%(w/v) soluction. Seed germination of radish (Raphanus sativas) and barnyardgrass (Echinochloa crus-galli) was inhibited by 0.5%(w/v) leaf extracts of Pinus densiflora and Quercus acutissima. MeOH extracts of Pinus denislora leaves gave 100% inhibition in seed germintion of radish at 2%(w/v) soluction and showed a complete inhibition in seedling growth of barnyardgrass as well as radish at 5% solution.

  • PDF

Morphological and Nutritional Characteristics and Crossability with Brassica Species of Baemoochae, xBrassicoraphanus (배무채의 형태와 영양적 특성 및 교잡 친화성)

  • Lee, Soo-Seong;Kim, Tae Yoon;Yang, Jungmin;Kim, Jongkee;Lim, Sooyeon;Yoon, Moo Kyoung
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.543-548
    • /
    • 2012
  • Morphological characters of Baemoochae, xBrassicoraphanus are mostly intermedium of the both parents, Chinese cabbage, Brassica rapa ssp. pekinensis and radish, Raphanus sativus. The upper and lower parts of the leaf resemble the shape of Chinese cabbage and radish, respectively. The midrib of the leaf is round like to that of radish, but very big more than 3 cm in diameter and white in color like that of Chinese cabbage. The root was changed from the swollen type like that of radish to the enlarged taproot like that of the land race of Chinese cabbage after attaining genetical stability. The flower is white. The seed pod is divided into 2 different parts; the upper part is radish and about 4 cm in length and holds 3-4 seeds and the lower part is Chinese cabbage and about 3 cm in length and holds 7-8 seeds. The color of seed is brown, weight per 1.000 seeds is 5.5 g and the number of seeds per mL is 120. The matured plant in the fall season is around 5 kg in weight and outer leaves are very vigorous and stiffly and inner leaves are erect and form a loose head. The leaf and the root contain a high level of sulforaphene which is well known as a functional substance for anti-cancer and anti-super-bacteria. Baemoochae is an amphidiploid and does not have the self incompatibility function. It has a high level of cross compatibility with Chinese cabbage as the female parent, but not the male parent. It is cross incompatible to cabbage, B. oleracea, black mustard, B. nigra and radish. However it is highly compatible to oil seed rape, B. napus, yellow mustard, B. carinata and partial compatible to muatard, B. juncea in the reciprocal cross.