• Title/Summary/Keyword: Radiopharmaceutical technetium

Search Result 2, Processing Time 0.017 seconds

Splenic Absorption of Radiopharmaceutical in Systemic Bone Scans Performed after Liver Transplantation

  • Sang-Hyeong Kil;Kyung-Nam Jo;Yung-Hyun Lim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.4-6
    • /
    • 2023
  • Technetium-labeled phosphate bone scan was shown to detect bone fractures and bone metastasis in early stage than general radiographs. Therefore, bone scan has become one of the most frequently performed nuclear medicine imaging examination. However, non-osseous radiopharmaceutical uptake on the bone scan are unusual findings. We report a case of diffuse splenic absorption of Tc-99m dicarboxypropane diphosphonate in patients who undergo liver transplantation.

  • PDF

Simulation and assessment of 99mTc absorbed dose into internal organs from cardiac perfusion scan

  • Saghar Salari;Abdollah Khorshidi;Jamshid Soltani-Nabipour
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.248-253
    • /
    • 2023
  • Directly, it is not possible to measure the absorbed dose of radiopharmaceuticals in the organs of the human body. Therefore, simulation methods are utilized to estimate the dose in distinct organs. In this study, individual organs were separately considered as the source organ or target organ to calculate the mean absorption dose, which SAF and S factors were then calculated according to the target uptake via MIRD method. Here, 99mTc activity distribution within the target was analyzed using the definition and simulation of ideal organs by summing the fraction of cumulative activities of the heart as source organ. Thus, GATE code was utilized to simulate the Zubal humanoid phantom. To validate the outcomes in comparison to the similar results reported, the accumulation of activity in the main organs of the body was calculated at the moment of injection and cardiac rest condition after 60 min of injection. The results showed the highest dose absorbed into pancreas was about 21%, then gallbladder 18%, kidney 16%, spleen 15%, heart 8%, liver 8%, thyroid 7%, lungs 5% and brain 2%, respectively, after 1 h of injection. This distinct simulation model may also be used for different periods after injection and modifying the prescribed dose.