• Title/Summary/Keyword: Radiometric Model

Search Result 69, Processing Time 0.021 seconds

New Non-uniformity Correction Approach for Infrared Focal Plane Arrays Imaging

  • Qu, Hui-Ming;Gong, Jing-Tan;Huang, Yuan;Chen, Qian
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Although infrared focal plane array (IRFPA) detectors have been commonly used, non-uniformity correction (NUC) remains an important problem in the infrared imaging realm. Non-uniformity severely degrades image quality and affects radiometric accuracy in infrared imaging applications. Residual non-uniformity (RNU) significantly affects the detection range of infrared surveillance and reconnaissance systems. More effort should be exerted to improve IRFPA uniformity. A novel NUC method that considers the surrounding temperature variation compensation is proposed based on the binary nonlinear non-uniformity theory model. The implementing procedure is described in detail. This approach simultaneously corrects response nonlinearity and compensates for the influence of surrounding temperature shift. Both qualitative evaluation and quantitative test comparison are performed among several correction technologies. The experimental result shows that the residual non-uniformity, which is corrected by the proposed method, is steady at approximately 0.02 percentage points within the target temperature range of 283 K to 373 K. Real-time imaging shows that the proposed method improves image quality better than traditional techniques.

Comparison of Chlorophyll Algorithms in the Bohai Sea of China

  • Xiu, Peng;Liu, Yuguang;Rong, Zengrui;Zong, Haibo;Li, Gang;Xing, Xinogang;Cheng, Yongcun
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.199-209
    • /
    • 2007
  • Empirical band-ratio algorithms and artificial neural network techniques to retrieve sea surface chlorophyll concentrations were evaluated in the Bohai Sea of China by using an extensive field observation data set. Bohai Sea represents an example of optically complex case II waters with high concentrations of colored dissolved organic mattei (CDOM). The data set includes coincident measurements of radiometric quantities and chlorophyll a concentration (Chl), which were taken on 8 cruises between 2003 and 2005, The data covers a range of variability in Chl in surface waters from 0.3 to 6.5 mg $m^{-3}$. The comparison results showed that these empirical algorithms developed for case I and case II waters can not be applied directly to the Bohai Sea of china, because of significant biases. For example, the mean normalized bias (MNB) for OC4V4 product was 1.85 and the root mean square (RMS) error is 2.26.

Degradation Monitoring of Visible Channel Detectors on COMS MI Using Moon Observation Images (달 관측 영상을 이용한 천리안위성 기상탑재체 가시채널 검출기의 성능감쇄 분석)

  • Seo, Seok-Bae;Jin, Kyoung-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.115-121
    • /
    • 2013
  • The first geostationary satellite in Korea, COMS (Communication, Ocean, and Meteorological Satellite), has been operating properly since its successful completion of the IOT (In Orbit Test). COMS MI (Meteorological Imager) acquires Earth observation images from visible and infrared channels. This paper describes a method to compute the degradation of the COMS visible detectors and the result of the degradation during the two years of the operation. The visible channel detectors' performance was determined based on the comparison between the instrument-based measurements and ROLO model-based values. The degradation rate of the visible channel detectors of COMS MI showed a normal condition.

In-orbit performance prediction for Amon-Ra energy channel instrument

  • Seong, Se-Hyun;Hong, Jin-Suk;Ryu, Dong-Ok;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.2-30.2
    • /
    • 2011
  • In this report, we present in-orbit radiometric performance prediction for the Amon-Ra (Albedo Monitor and Radiometer) energy channel instrument. The Integrated Ray Tracing (IRT) computational technique uses the ray sets arriving at the Amon-Ra instrument aperture orbiting around the L1 halo orbit. Using this, the variation of flux arriving at the energy channel detector was obtained when the Amon-Ra instrument including the energy channel design observes the Sun and Earth alternately. The flux detectability was verified at the energy channel detector (LME-500-A, InfraTecTM). The detector time response and RMS signal voltage were then derived from the simulated flux variation results. The computation results demonstrate that the designed energy channel optical system satisfies the in-orbit detectability requirement. The technical details of energy channel instrument design, IRT model construction, radiative transfer simulation and output signal computation results are presented together with future development plan.

  • PDF

Highly Dense 3D Surface Generation Using Multi-image Matching

  • Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.87-97
    • /
    • 2012
  • This study presents an automatic matching method for generating a dense, accurate, and discontinuity-preserved digital surface model (DSM) using multiple images acquired by an aerial digital frame camera. The proposed method consists of two main procedures: area-based multi-image matching (AMIM) and stereo-pair epipolar line matching (SELM). AMIM evaluates the sum of the normalized cross correlation of corresponding image points from multiple images to determine the optimal height of an object point. A novel method is introduced for determining the search height range and incremental height, which are necessary for the vertical line locus used in the AMIM. This procedure also includes the means to select the best reference and target images for each strip so that multi-image matching can resolve the common problem over occlusion areas. The SELM extracts densely positioned distinct points along epipolar lines from the multiple images and generates a discontinuity-preserved DSM using geometric and radiometric constraints. The matched points derived by the AMIM are used as anchor points between overlapped images to find conjugate distinct points using epipolar geometry. The performance of the proposed method was evaluated for several different test areas, including urban areas.

A Framework for Building Reconstruction Based on Data Fusion of Terrestrial Sensory Data

  • Lee, Impyeong;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Building reconstruction attempts to generate geometric and radiometric models of existing buildings usually from sensory data, which have been traditionally aerial or satellite images, more recently airborne LIDAR data, or the combination of these data. Extensive studies on building reconstruction from these data have developed some competitive algorithms with reasonable performance and some degree of automation. Nevertheless, the level of details and completeness of the reconstructed building models often cannot reach the high standards that is now or will be required by various applications in future. Hence, the use of terrestrial sensory data that can provide higher resolution and more complete coverage has been intensively emphasized. We developed a fusion framework for building reconstruction from terrestrial sensory data, that is, points from a laser scanner, images from digital camera, and absolute coordinates from a total station. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large complex existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS with reasonable resources.

  • PDF

Information Strategy Planning for Digital Infrastructure Building with Geo-based Nonrenewable Resources Information in Korea: Conceptual Modeling Units

  • Chi, Kwang-Hoon;Yeon, Young-Kwang;Park, No-Wook;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.191-196
    • /
    • 2002
  • From this year, KIGAM, one of Korean government-supported research institutes, has started new national program for digital geologic/natural resources infrastructure building. The goal of this program is to prepare digitally oriented infrastructure for practical digital database building, management, and public services of numerous types of paper maps related to geo-scientific resources or geologic thematic map sets: hydro-geologic map, applied geologic map, geo-chemical map, airborne radiometric/magnetic map, coal geologic map and off-shelf bathymetry map and so forth. As for digital infrastructure, several research issues in this topic are composed of: ISP (Information Strategy Planning), geo-framework modeling of each map set, pilot database building, cyber geo-mineral directory service system, and web based geologic information retrieval system upgrade which services Korean digital geologic maps scaled 1:50K. In this study, UML (Unified Modeling Language)-based data modeling of geo-data sets by and in KIGAM, among them, is mainly discussed, and its results are also presented in the viewpoint of digital geo-modeling ISP. It is expected this model is further progressed with the purpose of being a guidance or framework modeling for geologic thematic mapping and practical database building, as well as other types of national thematic map database building.

  • PDF

A Study on Urban Change Detection Using D-DSM from Stereo Satellite Data

  • Jang, Yeong Jae;Oh, Kwan Young;Lee, Kwang Jae;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.389-395
    • /
    • 2019
  • Unlike aerial images covering small region, satellite data show high potential to detect urban scale geospatial changes. The change detection using satellite images can be carried out using single image or stereo images. The single image approach is based on radiometric differences between two images of different times. It has limitations to detect building level changes when the significant occlusion and relief displacement appear in the images. In contrast, stereo satellite data can be used to generate DSM (Digital Surface Model) that contain information of relief-corrected objects. Therefore, they have high potential for the object change detection. Therefore, we carried out a study for the change detection over an urban area using stereo satellite data of two different times. First, the RPC correction was performed for two DSMs generation via stereo image matching. Then, D-DSM (Differential DSM) was generated by differentiating two DSMs. The D-DSM was used for the topographic change detection and the performance was checked by applying different height thresholds to D-DSM.

Determination of dosimetric dependence for effective atomic number of LDR brachytherapy seed capsule by Monte Carlo simulation

  • Berkay Camgoz;Dilara Tarim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2734-2741
    • /
    • 2023
  • Brachytherapy is a special case of radiotherapy. It should be arranged according to some principles in medical radiation applications and radiation physics. The primary principle is to use as low as reasonably achievable dose in all ionizing radiation applications for diagnostic and therapeutic treatments. Dosimetric distributions are dependent on radioactive source properties and radiation-matter interactions in an absorber medium such as phantom or tissue. In this consideration, the geometrical structure and material of the seed capsule, which surrounds a radioactive material, are directly responsible for isodose profiles and dosimetric functions. In this study, the radiometric properties of capsule material were investigated on dose distribution in a water phantom by changing its nuclear properties using the EGSnrc Monte Carlo (MC) simulation code. Effective atomic numbers of hypothetic mixtures were calculated by using different elements with several fractions for capsule material. Model 6711 brachytherapy seed was modeled by EGSnrc/Dosrcnrc Code and dosimetric functions were calculated. As a result, dosimetric parameters of hypothetic sources have been acquired in large-scale atomic number. Dosimetric deviations between the data of hypothetic seeds and the original one were analyzed. Unit dose (Gy/Particle) distributions belonging to different types of material in seed capsule have remarkably differed from the original capsule's data. Capsule type is major variable to manage the expected dose profile and isodose distribution around a seed. This study shows us systematically varied scale of material type (cross section or effective atomic number dependent) offers selective material usage in production of seed capsules for the expected isodose profile of a specific source.

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF