• 제목/요약/키워드: Radiological dose

검색결과 1,476건 처리시간 0.023초

유리선량계를 이용한 관전류자동조절기법과 고정관전류기법에서 저선량 및 고해상 흉부CT의 노이즈 및 선량 비교 (Comparison of Noise and Doses of Low Dose and High Resolution Chest CT for Automatic Tube Current Modulation and Fixed Tube Current Technique using Glass Dosimetry)

  • 박태석;한준희;조승연;이은임;조규원;권대철
    • 방사선산업학회지
    • /
    • 제11권3호
    • /
    • pp.131-137
    • /
    • 2017
  • To compare the radiation dose and image noise of low dose computed tomography (CT) and high resolution CT using the fixed tube current technique and automatic tube current modulation (CARE Dose 4D). Chest CT and human anthropomorphic phantom were used the RPL (radiophotoluminescence) dosimeters. For image evaluation, standard deviation of mean CT attenuation coefficient and CT attenuation coefficient was measured using ROI analysis function. The effective dose was calculated using CTDIvol and DLP. CARE Dose 4D was reduced by 74.7% and HRCT by 64.4% compared to the fixed tube current technique in low dose CT of chest phantom. In CTDIvol and DLP, the dose of CARE Dose 4D was reduced by fixed tube current technique. For effective dose, CARE Dose 4D was reduced by 47% and HRCT by 46.9% compared to the fixed tube current method, and the dose of CARE Dose 4D was significantly different (p<.05). Noise in the image was higher than that in the fixed tube current technique. Noise difference in the image of CARE Dose 4D in low dose CT was significant (p<.05). The low radiation dose and the noise difference of the CARE Dose 4D were compared with the fixed tube current technique in low dose CT and HRCT using chest phantom. The radiation doses using CARE Dose 4D were in accordance with the national and international dose standards. CARE Dose 4D should be applied to low dose CT and HRCT for clinical examination.

두부 CT검사에서의 노이즈 및 화질분석 (Noise and Image Quality Analysis of Brain CT Examination)

  • 최석윤;임인철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권4호
    • /
    • pp.279-284
    • /
    • 2019
  • The purpose of this study was to find the best protocol for balance of image quality and dose in brain CT scan. Images were acquired using dual-source CT and AAPM water phantom, noise and dose were measured, and effective dose was calculated using computer simulation program ALARA(S/W). In order to determine the ratio of image quality and dose by each protocol, FOM (figure of merits) equation with normalized DLP was presented and the result was calculated. judged that the ratio of image quality and dose was excellent when the FOM maximized. Experimental results showed that protocol No. 21(120 kVp, 10 mm, 1.5 pitch) was the best, the organ with the highest effective dose was the brain(33.61 mGy). Among organs with high radiosensitivity, the thyroid gland was 0.78 mGy and breast 0.05 mGy. In conclusion, the optimal parameters and the organ dose in the protocol were also presented from the experiment, It may be helpful to clinicians who want to know the protocol about the optimum state of image quality and dose.

Dose Volume Histogram Analysis for Comparison of Usability of Linear Accelerator Flattening Filter

  • Ji, Yun-Sang;Dong, Kyung-Rae;Ryu, Jae-Kwang;Choi, Ji-Won;Kim, Mi-Hyun
    • 방사선산업학회지
    • /
    • 제12권4호
    • /
    • pp.297-302
    • /
    • 2018
  • The wedge filter has two movements, fixed and dynamic. In this study, the depth dose distribution was analyzed to determine the stability of the dose distribution and dose volume histograms obtained by evaluating the usability of the critical normal tissue dose around the tumor dose. The depth dose was analyzed from the dose distribution from a Linac (6 MV and 10 MV irradiation field of energy $20{\times}20cm^2$, wedge filter with a SSD of 100 cm and $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ Y1-in (Left -7 cm), Y2-out(Right +7 cm). To analyze the fluctuations of the depth dose, a fixed wedge and dynamic wedge toe portion was examined according to the energy and angle because the size of the fluctuations was included in the error bound and did not show significant differences. The neck, breast, and pelvic dosimetry in tumor tissue are measured more commonly with a dynamic wedge than a fixed wedge presumably due to the error range. On the other hand, dosimetry of the surrounding normal tissue is more common using a fixed wedge than with a dynamic wedge.

Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma

  • Paik, Eun Kyung;Kim, Mi-Sook;Choi, Chul Won;Jang, Won Il;Lee, Sung Hyun;Choi, Sang Hyoun;Kim, Kum Bae;Lee, Dong Han
    • Radiation Oncology Journal
    • /
    • 제33권3호
    • /
    • pp.233-241
    • /
    • 2015
  • Purpose: To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. Materials and Methods: Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. Results: The conformity index was $1.05{\pm}0.02$ for the CyberKnife plan, and $1.13{\pm}0.10$ for the RapidArc plan. The homogeneity index was $1.23{\pm}0.01$ for the CyberKnife plan, and $1.10{\pm}0.03$ for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of $V_1$ and $V_3$. The normalized volumes of $V_{60}$ for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. Conclusion: CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body.

Depth Dose According to Depth during Cone Beam Computed Tomography Acquisition and Dose Assessment in the Orbital Area Using a Three-Dimensional Printer

  • Min Ho Choi;Dong Yeon Lee;Yeong Rok Kang;Hyo Jin Kim
    • Journal of Radiation Protection and Research
    • /
    • 제49권2호
    • /
    • pp.68-77
    • /
    • 2024
  • Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.

방사선과 재학생의 수시출입자 방사선 피폭선량에 대한 고찰 (Consideration about Radiological Technology Student's Frequent Workers Exposure Dose Rate)

  • 박훈희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권6호
    • /
    • pp.573-580
    • /
    • 2018
  • The Nuclear Safety Commission amended the Nuclear Safety Act by strengthening the safety management system for the frequent workers to the level of radiation workers. And students entering radiation management zones for testing and practical purposes are subject to frequent workers. It is inevitable that this will incur additional costs. In this paper, the validity of the amendment to the Nuclear Safety Act was to be assessed in terms of radiation protection. Study subjects are from 2014 to 2016, among university students in Seong-nam Korea and comparisons for analyses were made taking into account variables that are differences in annual, practical types, on-class and clinical practice students exposure dose. The analysis showed that exposures between on-class and clinical practice received were less than the annual dose limit of 1 mSv for the public. Then, some alternatives that excluding from frequent workers during on-class practice or mitigating the frequent workers' safety regulation for only on-class frequent workers can be considered. Optimization is how rational is the reduction in exposure dose to the costs required. Therefore, the results are hardly considered for optimization. If the data accumulated, it could be considered that the revision of the act could be evaluated and improved.

성인과 소아 CT 촬영시 IR 적용에 따른 영상화질 및 선량에 미치는 영향 (Effect of Image quality and Radiation Dose using Iterative Reconstruction in Adult and Pediatric CT: A Phantom Study)

  • Ju, A-ran;Jo, Jung-Hyun;Oh, Young-Kyu;Kim, Kyoung-Ki;Lee, Soo-Been;Jeon, Pil-Hyun;Kim, Daehong
    • 식품보건융합연구
    • /
    • 제4권1호
    • /
    • pp.23-31
    • /
    • 2018
  • The main issue of CT is radiation dose reduction to patient. The purpose of this study was to estimate the image quality and dose by iterative reconstruction (IR) for adults and pediatrics. Adult and pediatric images of phantom were obtained with 120 and 140 kV, respectively, in accordance with radiation dose in terms of volume CT dose index ($CTDI_{vol}$): 10, 15, 20, 25, 30, 35 mGy. Then, the adult and the pediatric images are reconstructed by filtered-backprojection (FBP) and iterative reconstruction (IR). The images were analyzed by signal-to-noise ratio (SNR). SNR is improved when IR and 140 kV are applied to acquire adult and pediatric images. In the adult abdomen, according to diagnostic reference level, the SNR values of bone were increased about 27.84 % and 27.77 % at 120 kV and 140 kV, and the tissue's SNR values of the IR were increased about 29.84 % and 33.46 % 120 and 140 kV, respectively. Dose is reduced to 40% in adults abdomen images when using IR reconstruction. In pediatric images, the bone's SNR were also increased about 17.70% and 18.17 % at 120 kV and 140 kV. The tissue's SNR were increased about 26.73 % and 26.15 % at 120 kV and 140 kV. Radiation dose is reduced from 30% to 50% for bone and tissue images. In the case of examinations for adult and pediatric CT, IR technique reduces radiation dose to patient, and it could be applied to adult and pediatric imaging.

담배연기와 담뱃잎 내 함유된 방사능 농도분석 및 위해도 평가 (Analysis of Radioactivity Concentrations in Cigarette Smoke and Tobacco Risk Assessment)

  • 이세령;이상복;김정윤;김지민;방예진;이두석;조형준;김성철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권5호
    • /
    • pp.489-494
    • /
    • 2021
  • In this study, radioactivity quantitative analysis was performed on radon contained in cigarette, and the effective dose was calculated using the result value to determine the amount of exposure caused by smoking. A total of 5 types of cigarettes were sampled. Cigarette smoke was collected by using activated carbon, and tobacco were measured by homogenizing for quantitative analysis. For each sample, Bi-214 and Pb-214 were subjected to gamma nuclide analysis to observe the uranium-based radioactive material contained in cigarette, and a measurement time of 30,000 seconds was set for the sample based on the results of previous studies. As a result of measuring the radioactivity of tobacco, a maximum of 0.715 Bq/kg was derived, and in the case of cigarette smoke measured using activated carbon, a maximum of 3.652 Bq/kg was derived. Using this measurement, the average effective dose to the lungs is 0.938 mSv/y, and it was found that there is a possibility of receiving exposure up to 1.099 mSv/y depending on the type of tobacco. It was found that the exposure dose due to cigarette occupies a large proportion of the annual effective dose limit for the general public. Therefore, more diverse studies on radioactive substances in cigarette are needed, and measures to monitor and reduce the incidental exposure to radon should be established.

몬테칼로 기법을 이용한 CBCT의 인체 내 장기의 흡수선량 평가 (Assesment of Absorbed Dose of Organs in Human Body by Cone Beam Computed Tomography using Monte Carlo Method)

  • 김종보;임인철;박은태
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권3호
    • /
    • pp.215-221
    • /
    • 2018
  • Cone beam Computed Tomography(CBCT) is an increasing trend in clinical applications due to its ability to increase the accuracy of radiation therapy. However, this leaded to an increase in exposure dose. In this study, the simulation using Monte Carlo method is performed and the absorbed dose of CBCT is analyzed and standardized data is presented. First, after simulating the CBCT, the photon spectrum was analyzed to secure the reliability and the absorbed dose of the tissue in the human body was evaluated using the MIRD phantom. Compared with SRS-78, the photon spectrum of CBCT showed similar tendency, and the average absorbed dose of MIRD phantom was 8.12 ~ 25.88 mGy depending on the body site. This is about 1% of prescription dose, but dose management will be needed to minimize patient side effects and normal tissue damage.

비스무스 차폐체 개발을 통한 소아 방사선검사의 피폭에 관한 연구 (Pediatric Radiation Examination by Development of Bismuth Shield Research on Radiation Exposure)

  • 김훈;김용근;김준년;위승현;박은경;채명준;백부길;김은혜;임청환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제47권3호
    • /
    • pp.205-211
    • /
    • 2024
  • Currently, with the development of technologies, X-ray examinations for medical examinations at hospital is increasing. This study was conducted to help reduce radiation exposure by measuring the exposure dose received by pediatric patients and the spatial dose of the X-ray room. Dosimeters were installed in the eyeball, thyroid gland, breast, gonads and 4 directions at a distance of 30 cm, 40 cm, 50 cm from the phantom. The dose was measured ten times each, before, and after the application of the bismuth shield under the examination conditions of the head, chest, and abdomen of pediatric patients. Under the condition of head examination, when a shielding was applied, the dose reduction rate was 68.58% for the eyeball, 72.88% for the thyroid, 84.2% for the breast, and 72.36% for the gonad. The chest examination showed reductions of 19.56% eyeball, 56.98% thyroid, 1.21% breast, and 0.68% gonad. The abdominal examination showed reduction rates of 2.6% eyeball, 10.67% thyroid, 19.85% breast, and 82.02% gonad. Spatial dose decreased by 62.25% at 30 cm, 61.16% at 40 cm, and 68.68% at 50 cm. When the bismuth shield was applied, there was a decrease in dose across all examinations, as well as a reduction in spatial dose. Continued research on the use of bismuth shields will help radiological technologists achieve their goal of dose reduction.