• Title/Summary/Keyword: Radiological Safety

Search Result 538, Processing Time 0.029 seconds

Study Radiological Defense Interrelationship Research in Career (경력에 따른 방사선방어 상관성 연구)

  • Kim, Jean Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.135-138
    • /
    • 2012
  • Purpose : This research the isotope of handling was to an actual act of the radiological defense which it follows in career of the clinical pathological companies in order to inquire the interrelation for a radiological defense. Materials and Methods : The tool of this research with question from 2010 October until November did electrification Chwung Cheng and the Seoul isotope thread clinical pathological company with the object person and it investigated in direct question or mail method, the data which is collected used SPSS19.0 programs and frequency and percentage and t-test, ANOVA, it used it analyzed a multiple regression analysis method. Results : The interrelationship of the radiological defense which it follows in career was visible the interrelation which considers statistically (p<0.01). But the correlation coefficient appeared lowly with 0.196. With the variable who affects in radiological defense act it appeared with worker providing by law educations and RI license acquisitions. Conclusion : There is to business progress and the radiological defense act respects a worker safety stands the unit only is the fact which is important. Consequently a possibility of saying that the radiation worker education is necessary, it executes the education which is continuous, RI license acquisitions, there is.

  • PDF

Development and strengthening of the nuclear and radiation safety infrastructure for nuclear power program of Bangladesh

  • Islam, Md. Shafiqul;Faisal, Shafiqul Islam;Khan, Sadia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1705-1716
    • /
    • 2021
  • Bangladesh, as a newcomer country, is expecting to start her nuclear power journey by 2022. Due to evident reasons, newcomer nuclear countries face several key challenges concerning the development of national nuclear safety infrastructure. The paper investigates the status of the 7 key safety infrastructure issues out of the 19 and readiness of the supportive organizations, laboratories, and workforces following the International Atomic energy Agency's status evaluation guide at milestone 3 and foreign countries' practice. Much progress has been achieved at phase 3 regarding the establishments of a few Acts, a regulator, and an operator. However, comprehensive regulatory frameworks, skilled workforces, establishments of a few supportive organizations, and laboratories for managing environmental radioactivity, radiological accidents, and radioactive wastes are yet to ready. Several suggestions are made for establishing and expediting radiation monitoring laboratories, a radiological emergency management center, a radioactive waste management company, and technical support organizations for the safety infrastructure. To avoid perceived risks, policymakers and competent authorities need to emphasize creating an optimized safety infrastructure before commissioning and operating the 1st nuclear power plant safely, securely, and cost-sustainably.

Analysis of the Necessity of Medical Records Related to Radiological Examination (방사선검사의 의무기록에 관한 요구도 분석)

  • Hong, Dong-Hee;Lim, Cheong-Hwan;Lim, Woo-Taek;Joo, Young-Cheol;Jung, Hong-Ryang;Kim, Eun-Hye;Yoon, Yong-Su;Jung, Young-Jin;Choi, Ji-Won;Jeong, Sung-Hun;Park, Myeong-Hwan;Yang, Oh-Nam;Jeong, Bong-Jae
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.513-523
    • /
    • 2021
  • The purpose of this study was to discuss the required items and feasibility of medical records of radiological examinations performed by radiological technologists at medical institutions. An online survey was conducted to a total of 10,000 radiation-related workers, of which 1,026 (10.3%) responded. As a research method, self-made questionnaires were used. The online survey was conducted from September 10 to September 20, 2021 for the survey period. For response data, a Chi-square test was performed according to demographic characteristics using SPSS 27.0 version (IBM Inc., Chicago, Ill, USA), and it was judged to be significant when the P value was less than 0.05. The reliability of the questionnaire response was found to be Chronbach α=0.933. More than 90% of the medical records related to radiological examinations are necessary, and they answered that a curriculum, remuneration curriculum, and legal system for medical records should be prepared. More than 90% of the respondents agreed with the proposal of the Radiological Technologist Independent Act for legal preparation, and most of the information required for medical records is currently recorded in DICOM images. According to the demographic characteristics, the medical record requirement for radiological examination, curriculum, continuing education, and legislation were found to be higher with higher education and higher with longer working experience. In addition, most of the radiology departments showed a high demand for medical records, so most of them responded positively to the medical records requirements for radiological examinations. This study analyzed the medical record requirements for radiological examinations, and as shown in the results, medical record requirements for radiological examinations was found that most radiological technologists felt need for the new law and supported it. In addition, if the information recorded in the DICOM image is used, it is considered that medical records could be easily prepared without additional work by the radiological technologists.

The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea

  • Park, Byeong Ryong;Kim, Jae Seok;Yoo, Jaeryong;Ha, Wi-Ho;Jang, Seongjae;Kang, Yeong-Rok;Kim, HyoJin;Jang, Han-Ki;Han, Ki-Tek;Min, Jeho;Choi, Hoon;Kim, Jeongin;Lee, Jungil;Kim, Hyoungtaek;Kim, Jang-Lyul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2379-2386
    • /
    • 2020
  • This paper presents the results of the first intercomparison exercise performed by the Korea retrospective dosimetry (KREDOS) working group using electron paramagnetic resonance (EPR) spectroscopy. The intercomparison employed the alanine dosimeter, which is commonly used as the standard dosimeter in EPR methods. Four laboratories participated in the dose assessment of blind samples, and one laboratory carried out irradiation of blind samples. Two types of alanine dosimeters (Bruker and Magnettech) with different geometries were used. Both dosimeters were blindly irradiated at three dose levels (0.60, 2.70, and 8.00 Gy) and four samples per dose were distributed to the participating laboratories. Assessments of blind doses by the laboratories were performed using their own measurement protocols. One laboratory did not participate in the measurements of Magnettech alanine dosimeter samples. Intercomparison results were analyzed by calculating the relative bias, En value, and z-score. The results reported by participating laboratories were overall satisfactory for doses of 2.70 and 8.00 Gy but were considerably overestimated with a relative bias range of 10-95% for 0.60 Gy, which is lower than the minimum detectable dose (MDD) of the alanine dosimeter. After the first intercomparison, participating laboratories are working to improve their alanine-EPR dosimetry systems through continuous meetings and are preparing a second intercomparison exercise for other materials.

Conclusions and Suggestions on Low-Dose and Low-Dose Rate Radiation Risk Estimation Methodology

  • Sakai, Kazuo;Yamada, Yutaka;Yoshida, Kazuo;Yoshinaga, Shinji;Sato, Kaoru;Ogata, Hiromitsu;Iwasaki, Toshiyasu;Kudo, Shin'ichi;Asada, Yasuki;Kawaguchi, Isao;Haeno, Hiroshi;Sasaki, Michiya
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.14-23
    • /
    • 2021
  • Background: For radiological protection and control, the International Commission on Radiological Protection (ICRP) provides the nominal risk coefficients related to radiation exposure, which can be extrapolated using the excess relative risk and excess absolute risk obtained from the Life Span Study of atomic bomb survivors in Hiroshima and Nagasaki with the dose and dose-rate effectiveness factor (DDREF). Materials and Methods: Since it is impossible to directly estimate the radiation risk at doses less than approximately 100 mSv only from epidemiological knowledge and data, support from radiation biology is absolutely imperative, and thus, several national and international bodies have advocated the importance of bridging knowledge between biology and epidemiology. Because of the accident at the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station in 2011, the exposure of the public to radiation has become a major concern and it was considered that the estimation of radiation risk should be more realistic to cope with the prevailing radiation exposure situation. Results and Discussion: To discuss the issues from wide aspects related to radiological protection, and to realize bridging knowledge between biology and epidemiology, we have established a research group to develop low-dose and low-dose-rate radiation risk estimation methodology, with the permission of the Japan Health Physics Society. Conclusion: The aim of the research group was to clarify the current situation and issues related to the risk estimation of low-dose and low-dose-rate radiation exposure from the viewpoints of different research fields, such as epidemiology, biology, modeling, and dosimetry, to identify a future strategy and roadmap to elucidate a more realistic estimation of risk against low-dose and low-dose-rate radiation exposure.

Reactivity feedback effect on loss of flow accident in PWR

  • Foad, Basma;Abdel-Latif, Salwa H.;Takeda, Toshikazu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1277-1288
    • /
    • 2018
  • In this work, the reactor kinetics capability is used to compute the design safety parameters in a PWR due to complete loss of coolant flow during protected and unprotected accidents. A thermal-hydraulic code coupled with a point reactor kinetic model are used for these calculations; where kinetics parameters have been developed from the neutronic SRAC code to provide inputs to RELAP5-3D code to calculate parameters related to safety and guarantee that they meet the regulatory requirements. In RELAP5-3D the reactivity feedback is computed by both separable and tabular models. The results show the importance of the reactivity feedback on calculating the power which is the key parameter that controls the clad and fuel temperatures to maintain them below their melting point and therefore prevent core melt. In addition, extending modeling capability from separable to tabular model has nonremarkable influence on calculated safety parameters.

Review of Unplanned Release at Foreign Nuclear Power Plants and Radiological Monitoring at Korean Power Plants (해외원전 비계획적 방출 및 한국의 환경감시 현황 분석)

  • Park, Soo-Chan;Ham, Baknoon;Kwon, Jang-Soon;Cho, Dong-Keun;Jeong, Jihye;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.1-15
    • /
    • 2018
  • Despite of safety issues related to radiological hazards, 31 countries around the world are operating more than 450 nuclear power plants (NPPs). To operate NPPs safely, safety regulations from radiation protection organizations were developed and adopted in many countries. However, many cases of radionuclide releases at foreign NPPs have been reported. Almost all commercial NPPs routinely release radioactive materials to the surrounding environments as liquid and gas phases under control. These releases are called 'planned releases' which are planned, regularly monitored, and well documented. Meanwhile, the releases focused in this review, called 'unplanned releases', are neither planned nor monitored by regulatory and/or protection organizations. NPPs are generally composed of various structures, systems and components (SSCs) for safety. Among them, the SSCs near reactors are closely related to safety of NPPs, and typically fabricated to comply with stringent requirements. However, some non-safety related SSCs such as underground pipes may be constructed only according to commercial standards, causing the leakage of radioactive fluids usually containing tritium ($^3H$). This paper discusses SSCs of NPPs and introduces several cases of unplanned releases at foreign NPPs. The current regulation on the environmental radiological surveillance and assessment around the NPPs in South Korea are also examined.

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

Evaluation of Image Receptor Characteristics in Computed Radiography System Using Exposure Index in International Electrotechnical Commission (I) (IEC 규정 노출지수를 활용한 디지털 방사선 영상시스템에서의 영상 수용체간 특성평가 (I))

  • Park, Hyemin;Yoon, Yongsu;Roh, Younghoon;Kim, Sungjun;Na, Chanyoung;Han, Taeho;Kim, Jungsu;Jeong, hoiwoun;Kim, Jungmin
    • Journal of radiological science and technology
    • /
    • v.42 no.4
    • /
    • pp.291-299
    • /
    • 2019
  • The International Electrotechnical Commission (IEC) has regulated the definition and requirements of the exposure index (EI). In this study, we calculated the EI of several image receptors in digital radiography system of two different manufacturers according to the method as per IEC, and evaluated the relationship with incident air kerma. To calculate the EI, w e obtained the characteristics curve of each image receptor by increasing the incident air kerma at RQA 3, 5, 7 and 9, respectively. As a result, there was no significant difference in the EI values between different image receptors of the same manufacturer, but EI values of different manufacturer was different despite the same air kerma was incident. Therefore, understanding the characteristics of the digital radiography systems is important in order to use EI as a tool for measuring and managing the radiation dose.

Survey on Usage of Korean Quantitative Ultrasound for Proposing Quantitative Ultrasound Quality Control Guideline (초음파골밀도측정기 정도관리 방안제시를 위한 한국 초음파골밀도 사용현황 조사)

  • Jeong, Yoon-Ji;Kim, Mi-Jeong;Lee, Seung-Youl;Lee, Tae-Hee;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.329-337
    • /
    • 2018
  • This study was investigated quantitative ultrasound (QUS) usage in Korea for the QUS quality control guidelines. A total of 344 questionnaires collected from July 24th to August 25th 2017 were analyzed. Questionnaires were created through user interviews, expert group advice, literature review and field observation. As a result of the general characteristics of quantitative ultrasound holding amounted to 81.98% of clinic and 6.69% of hospitals. The main user was radio-logical technologists as 31.39%. The contact methods of the gel pad (balloon) were the most used at 56.68% and the scan region was 91.9% of calcaneus. The quantitative ultrasound quality control cycle was 67.37% when the abnormality was found in the equipment, and 63.66% when the accuracy control was implemented according to the manual. The phantoms of QUS were 34.30% of the manufacturer's own phantoms. User of QUS had never received education for quality control of quantitative ultrasound as 62.20%. This study was expected to be useful when creating detailed quality control guidelines in the future, as well as guidelines for the quality control of Korea's standard quantitative ultrasound.