• 제목/요약/키워드: Radioisotopes

검색결과 190건 처리시간 0.022초

166Ho-chitosan 복합체의 복강 내 투여를 위한 베타선 흡수선량 평가 (Beta Dosimetry in Intraperitoneal Administration of 166Ho-chitosan Complex)

  • 김은희;임상무;박경배
    • 대한핵의학회지
    • /
    • 제32권1호
    • /
    • pp.99-108
    • /
    • 1998
  • Intraperitoneal administration of radioisotopes is suggested to treat the metastatic ovarian cancer in the peritoneal cavity. Administering beta-emitting radioisotopes into the peritoneal cavity allows the maximum energy delivery to the cancerous cells of the peritoneal wall surface while sparing the normal cells located in deep site of the peritoneal wall. In this study, dose estimates of the peritoneal wall are provided to be used for prescribing the amount of $^{166}Ho$-chitosan complex administered. The $^{166}Ho$-chitosan complex diffused in the peritoneal fluid may attach to the peritoneal wall surface. The attachment fraction of $^{166}Ho$-chitosan complex to the peritoneal wall surface is obtained by simulating the ascites with Fischer rats. Both volume source in the peritoneal fluid and the surface source over the peritoneal wall surface are counted for the contribution to the peritoneal wall dose. The Monte Carlo code EGS4 is used to simulate the energy transfer of the beta particles emitted from $^{166}Ho$. A plane geometrical model of semi-infinite volume describes the peritoneal cavity and the peritoneal wall. A semi-infinite plane of $10{\mu}m$ in thickness at every 1 mm of depth in the peritoneal wall is taken as the target in dose estimation. Greater than 98 percents of attachment fraction has been observed from the experiments with Fischer rats. Given $1.3{\mu}Ci/cm^2$ and $2.4{\mu}Ci/ml$ of uniform activity density, absorbed dose is 123 Gy, 8.59 Gy, 3.00 Gy, 1.03 Gy, and .327 Gy at 0 mm, 1 mm, 2 mm, 3 mm, and 4 mm in depth to the peritoneal wall, respectively.

  • PDF

RI를 이용한 규소시용이 수도의 영양요소 흡수에 미치는 영향 (Studies on the effect of Silicate on nutrients up take using radioisotopes in rice plant. (II))

  • 노준정
    • 한국작물학회지
    • /
    • 제12권
    • /
    • pp.25-29
    • /
    • 1972
  • 1. 광조건에 의한 흡수량 차이는 $P_2$ $O^52$, Ca의 순서로 줄었다. 즉 암조건에서의 $P_2$ $O^52$흡수는 광조건에 비해 약 1/6정도이였으나 Ca에서는 1/2정도였다. 2. 상대습도는 Ca의 흡수를 약간 변화시켰으나 $P_2$ $O^52$나 Mn은 습도에 별 영향을 받지 않고 흡수되었다. 3. 규소함량이 다른 수도체간의 각각 동위원소흡수는 일률적으로 규소무처리구에서 제일 많았고 다음이 70.140ppm으로 생육시킨 수도가 제일 적게 흡수했다. 이는 곧 수도체내의 규소함량과 양분흡수와 긴밀한 관계가 있음을 뜻한다. 4. 뿌리에서부터 줄기로의 이행률을 보면 Ca이 1보다 컸고 Mn이 평균 0.5(1/2) $P_2$ $O^52$이 0.2(1/5) 정도였다. 이것은 이들 영향요소들의 수도체 흡수의 특이한 pattern이라고 생각된다.

  • PDF

The production and application of therapeutic 67Cu radioisotope in nuclear medicine

  • Kim, Gye-Hong;Lee, Kyo Chul;Park, Ji-Ae;An, Gwang-Il;Lim, Sang Mo;Kim, Jung Young;Kim, Byung Il
    • 대한방사성의약품학회지
    • /
    • 제1권1호
    • /
    • pp.23-30
    • /
    • 2015
  • Radioisotopes emitting low-range highly ionizing radiation such as ${\beta}$-particles are of increasing significance in internal radiotherapy. Among the ${\beta}$-particle emitting radioisotopes, $^{67}Cu$ is an attractive radioisotope for various nuclear medicine applications due to its medium energy ${\beta}$-particle, gamma emissions, and 61.83-hour half-life, which can also be used with $^{64}Cu$ for PET imaging. The production and application of the ${\beta}$-emitting radioisotope $^{67}Cu$ for therapeutic radiopharmaceutical are outlined, and different production routes are discussed. A survey of copper chelators used for antibody labeling is provided. It has been produced via proton, alpha, neutron, and gamma irradiations followed by solvent extraction, ion exchange, electrodeposition. Clinical studies using $^{67}Cu$-labelled antibodies in lymphoma, colon carcinoma and bladder cancer patients are reviewed. Widespread use of this isotope for clinical studies and preliminary treatments has been limited by unreliable supplies, cost, and difficulty in obtaining therapeutic quantities.

INITIAL ESTIMATION OF THE RADIONUCLIDES IN THE SOIL AROUND THE 100 MEV PROTON ACCELERATOR FACILITY OF PEFP

  • An, So-Hyun;Lee, Young-Ouk;Cho, Young-Sik;Lee, Cheol-Woo
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.747-752
    • /
    • 2007
  • The Proton Engineering Frontier Project (PEFP) has designed and developed a proton linear accelerator facility operating at 100 MeV - 20 mA. The radiological effects of such a nuclear facility on the environment are important in terms of radiation safety. This study estimated the production rates of radionuclides in the soil around the accelerator facility using MCNPX. The groundwater migration of the radioisotopes was also calculated using the Concentration Model. Several spallation reactions have occurred due to leaked neutrons, leading to the release of various radionuclides into the soil. The total activity of the induced radionuclides is approximately $2.98{\times}10^{-4}Bq/cm^3$ at the point of saturation. $^{45}Ca$ had the highest production rate with a specific activity of $1.78{\times}10^{-4}Bq/cm^3$ over the course of one year. $^3H$ and $^{22}Na$ are usually considered the most important radioisotopes at nuclear facilities. However, only a small amount of tritium was produced around this facility, as the energy of most neutrons is below the threshold of the predominant reactions for producing tritium: $^{16}O(n,\;X)^3H$ and $^{28}Si(n,X)^3H$ (approximately 20 MeV). The dose level of drinking water from $^{22}Na$ was $1.48{\times}10^{-5}$ pCi/ml/yr, which was less than the annual intake limit in the regulations.

Comparison of Machine Learning-Based Radioisotope Identifiers for Plastic Scintillation Detector

  • Jeon, Byoungil;Kim, Jongyul;Yu, Yonggyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • 제46권4호
    • /
    • pp.204-212
    • /
    • 2021
  • Background: Identification of radioisotopes for plastic scintillation detectors is challenging because their spectra have poor energy resolutions and lack photo peaks. To overcome this weakness, many researchers have conducted radioisotope identification studies using machine learning algorithms; however, the effect of data normalization on radioisotope identification has not been addressed yet. Furthermore, studies on machine learning-based radioisotope identifiers for plastic scintillation detectors are limited. Materials and Methods: In this study, machine learning-based radioisotope identifiers were implemented, and their performances according to data normalization methods were compared. Eight classes of radioisotopes consisting of combinations of 22Na, 60Co, and 137Cs, and the background, were defined. The training set was generated by the random sampling technique based on probabilistic density functions acquired by experiments and simulations, and test set was acquired by experiments. Support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN) were implemented as radioisotope identifiers with six data normalization methods, and trained using the generated training set. Results and Discussion: The implemented identifiers were evaluated by test sets acquired by experiments with and without gain shifts to confirm the robustness of the identifiers against the gain shift effect. Among the three machine learning-based radioisotope identifiers, prediction accuracy followed the order SVM > ANN > CNN, while the training time followed the order SVM > ANN > CNN. Conclusion: The prediction accuracy for the combined test sets was highest with the SVM. The CNN exhibited a minimum variation in prediction accuracy for each class, even though it had the lowest prediction accuracy for the combined test sets among three identifiers. The SVM exhibited the highest prediction accuracy for the combined test sets, and its training time was the shortest among three identifiers.

Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond: Part II, Macrophytes and fish

  • Aleksei Panov ;Alexander Trapeznikov;Vera Trapeznikova ;Alexander Korzhavin
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.707-716
    • /
    • 2023
  • The influence of waste technological waters of thermal and fast reactors of Beloyarsk NPP (Russia) on the accumulation of 60Co, 90Sr and 137Cs in macrophytes and ichthyofauna of the cooling pond has been studied. Critical radionuclides, routes of their entry into the ecosystem and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at the Beloyarsk NPP, based on fast reactors, has a much smaller effect on the release of artificial radionuclides into the environment. Therefore, during the entire period of monitoring studies (1976-2019), the decrease in the specific activity of radionuclides of NPP origin in macrophytes was 13-25800 times, in ichthyofauna 1.5-44.5 times. The maximum discharge of artificial radionuclides into the Beloyarsk reservoir was noted during the period of restoration and decontamination work aimed at eliminating the emergencies at the AMB reactors of NPP. The factors influencing the accumulation of artificial radionuclides in the components of the freshwater ecosystem of the Beloyarsk cooling pond have been determined, including: the physicochemical nature of radioisotopes, their concentration in surface water, the temperature of the aquatic environment, the trophicity of the reservoir, the species of hydrobionts.

핵의학과에서 사용하는 납 앞치마의 방사선 차폐율 평가 (Evaluation of Radiation Shielding Rate of Lead Aprons in Nuclear Medicine)

  • 한상현;한범희;이상호;홍동희;김기진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제40권1호
    • /
    • pp.41-47
    • /
    • 2017
  • 본 연구는 영상의학과에서 사용하는 Χ선용 납 앞치마를 핵의학과에서도 사용하고 있는 점에 착안하여 방사성동위원소의 종류 즉, ${\gamma}$선 에너지에 따라 납 앞치마의 차폐율을 평가하여 방호효과를 알아보고자 하였다. 실험에 사용된 방사성동위원소는 이용통계 중 상위 5개 핵종인 $^{99}mTc$, $^{18}F$, $^{131}I$, $^{123}I$, $^{201}Tl$을 사용하였고, 납 앞치마는 실제 핵의학과에서 사용 중인 납 당량 0.35 mmPb의 납 앞치마를 이용하였다. 실험결과 납 앞치마의 평균 차폐율은 $^{99}mTc$이 31.59%, $^{201}Tl$은 68.42%, $^{123}I$이 76.63%로 나타났다. $^{131}I$의 차폐율은 납 앞치마를 사용했을 경우가 오히려 선량률이 평균 33.72%가 증가되어 나타났고, $^{18}F$의 경우 평균 차폐율이 -0.315%로 나타나 차폐효과가 거의 없는 것으로 나타났다. 결과적으로 납 앞치마의 차폐율이 높은 방사성동위원소의 순서는 $^{123}I$, $^{201}Tl$, $^{99}mTc$, $^{18}F$, $^{131}I$ 순이었다. 현재 핵의학 검사실에서 사용하고 있는 납 앞치마는 일반 Χ선용 납 앞치마로 ${\gamma}$선을 이용하는 핵의학 환경에서는 적절치 않은 것으로 생각된다. 따라서 방사선작업종사자들의 효과적인 방사선 방호와 작업능률을 고려하여 방사성동위원소의 특성에 맞는 핵의학 전용 납 앞치마의개발이 요구된다.

아스팔트 함량 변화에 따른 중성자 검출에 관한 연구 (A Study on the Neutron Detection by change of Asphalt Content)

  • 김기준
    • 한국컴퓨터산업학회논문지
    • /
    • 제8권1호
    • /
    • pp.9-16
    • /
    • 2007
  • 본 연구에서는 아스팔트 함량 변화에 따라서 중성자 계측수가 어떻게 변화되는가를 계산하여 법적 규제 면제치인 $100[{\mu}Ci]$이하의 방사성동위원소를 이용한 아스팔트 함량측정기의 기본 설계 자료로 활용하고자한다. 이를 위하여 1차 년도에서 실시했던 설계자료를 활용하여 아스팔트 함량의 변화에 따라 중성자 계측수가 어떻게 증감이 이루어지고, 또한 감속재인 폴리에틸렌 주변에 흡수체인 카드늄판을 설치했을 때의 계측수의 변화를 MCNP 코드를 이용하여 살펴보았다.

  • PDF

효소면역학적 방법에 의한 식물홀몬 분석 (Enzyme-linked Immunosorbent Assay of Plant Hormones)

  • 노기안
    • 한국작물학회지
    • /
    • 제34권s01호
    • /
    • pp.40-47
    • /
    • 1989
  • In spite of the development of highly sophisticated instrument, the precise quantitation of plant hormones still has many difficulties. Due to their high specificity, sensitivity and minimal sample purification steps, immunological assays have been widely applied for plant hormone assay. Enzme-linked immunosorbent assay technique for the determination of plant hormones was developed by Voller in 1978. Immunological assays are accomplished by competition of labeled tracer antigen and unlabeled antigen for a limited number of specific antibodies. The use of enzyme as replacement labels for radioisotopes enabled much of the sensitivity and specificity of radioimmunoassay (RIA) to be retained but without the inherent disadvantage of high capital cost, potential health hazard, and short shelf life of the labeled reactants.

  • PDF

Copper chelation chemistry with various chelators for radiopharmaceuticals

  • Kim, Chul Hee;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.129-134
    • /
    • 2019
  • Over a few decades, copper radioisotopes and their chelation chemistry for radiopharmaceuticals have played crucial role in the radiopharmaceutical science area. A variety of chelators have been required for their stable targeting ability in physiological conditions. For radiolabeling with copper-64 into biomolecules, thermodynamic stability, kinetic inertness, pH stability, and redox stability should be considered. In this regard, many researchers have attempted to develop the chelators that can bind with copper more tightly, rapidly and stably for copper radiolabeling. This review discusses the chemistry of copper, its suitable chelators and characteristics, while elucidating the evaluations of each chelator for radiolabeling.