• Title/Summary/Keyword: Radioactive workers

Search Result 124, Processing Time 0.028 seconds

A Study on the Verification and Improvement to Locate and Determine the Radioactive Contamination Using a Whole Body Counter (전신계측기를 이용한 원전종사자 방사성오염 위치확인과 내부방사능 측정개선에 관한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Whole body counters (WBCs) are used to monitor radiation workers for internal contamination of radionuclides at domestic nuclear power plants (NPPs). A WBC is a scintillation detector using sodium iodide (NaI) and provides the identification of inhaled radionuclide and the measurement of its internal radioactivity in a short time. However, it is often possible to estimate external contamination as internal contamination due to radionuclides attached to the skin of radiation workers and this leads to an excessively conservative estimation of radioactive contamination. In this study, several experiments using a WBC and the Korean humanoid phantom were performed to suggest the more systematic method of discrimination between external and internal contamination. Furthermore, a WBC geometry experiment was conducted to suggest the optimal WBC geometry in consideration of deposited areas inside the body for dominant radionuclides at NPPs. The procedure of measurement and estimation of internal radioactivity for radiation workers at NPPs was improved on the basis of experimental results. Thus, it is expected to prevent from estimating internal exposure dose conservatively owing to the application of accurate whole body counting program to NPPs.

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.

Determination of Design Basis for a Storage System for Spent Fuel in Korea (국내 사용후핵연료 저장시스템의 설계기준 설정 인자 고찰)

  • Yoon, Jeong-Hyoun;Lee, Eun-Yong;Woo, Sang-In;Kim, Tae-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • Safe operation and maintenance of engineered dry storage systems for spent fuel from nuclear power plants basically depends on adequately adopted design requirements. The most important design target of the system are those which provide the necessary assurances that spent fuel can be received, handled, stored and retrieved without undue risk to health and safety of workers and the public. To achieve these objectives, the design of the system incorporates features to remove spent fuel residual heat, to provide for radiation protection, and to maintain containment over the lifespan of the system as specified in the design specifications. The features also provide for all possible anticipated operational occurrences and design basis events in accordance with the design basis as guided by the designated regulations. The general performance requirements of a projected storage system are introduced in this paper. The storage system is designed to store fuel assemblies in associated with designated regulatory requirements. Small increases/decreases in maximum burnup can be adjusted with cooling time. These variations are compensated for by a corresponding small site-specific increase/decrease in the design basis-cooling period, as long as the maximum heat load and radioactivity of loaded fuel assemblies are met. Generic design basis events considered for the storage system are summarized. Shielding and radiological requirements along with mechanical and structural are derived in this study.

The Increased Use of Radiation Requires Enhanced Activities Regarding Radiation Safety Control (방사성 물질 등의 이용 증가에 따른 안전 관리 문제점 고찰)

  • Lee, Yunjong;Lee, Jinwoo;Jeong, Gyo-Seong
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience.

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

Analysis of Air Activation in PET Cyclotron Facility (PET 사이클로트론 시설의 공기 방사화 분석)

  • Jang, Dong-Gun;Kang, Sesik;Kim, Changsoo;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.489-494
    • /
    • 2016
  • Nuclear reaction which occurs in the cyclotron generate unnecessary neutrons. The results of this happening can radioactivate surrounding materials and radioactive materials cause radiation exposure. When people take radioactive air, it makes internal exposure. The purpose of this study was to analyze the radioactive air inside of the ultra-compact 16.5 MeV cyclotron in operation. As a result of study, the radio activation occurred by compact cyclotron generates a very low internal exposure to workers. Comparing the radioactivity from radioactive nuclide with legal standard, that was under reference value. However, it could be at risk for internal exposure in case of higher energy cyclotron. Therefore, legal standard is needed for ventilation equipment of radiation facilities.

An Effects of Radiation Dose Assessment for Radiation Workers and the Member of Public from Main Radionuclides at Nuclear Power Plants (원전에서 발생하는 주요 방사성핵종들이 방사선작업종사자와 원전 주변주민의 피폭방사선량 평가에 미치는 영향)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae;Kim, Seok-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • In a primary system at nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water conditions. Particularly, $^3H,\;^{14}C,\;^{58}Co,\;^{60}Co,\;^{137}Cs,\;and^{131}I$ are important radionuclides in respect of dose assessment for radiation workers and management of radioactive effluents. In this paper, the dominant contributors of radiation exposure for radiation workers and the member of public adjacent to NPPs were reviewed and the process of dose assessment attributable to those contributors were introduced. Furthermore, the analysis for some examples of radiation exposure to radiation workers and the public during the NPP operation was carried out. This analysis included the notable precedents of internal radiation exposure and contamination of demineralized water occurred in Korean NPPs. Particularly, the potential issue about the dose assessment of tritium and carbon-14 was also reviewed in this paper.

Estimation of Lens Dose of Radioactive Isotopes Using ED3 (ED3를 이용한 방사성동위원소 의약품의 수정체 피폭선량평가)

  • Song, Ha-Jin;Ju, Yong-Jin;Jang, Han;Dong, Kyung-Rae;Kang, Kyeong-Won;Choi, Eun-Jin;Kwak, Jong-Gil;Ryu, Jae-Kwang;Chung, Woon-Kwan
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • It is suggested that the dose limit recommended in the Enforcement Decree of Korea's Nuclear Safety Act should not exceed 150 mSv per year for radiation workers. Recently, however, ICRP 118 report has suggested that the threshold dose of the lens should be reduced to 0.2~0.5 Gy and the mean dose should not exceed 50 mSv per year for an average of 20 mSv over 5 years. Based on these contents, $^{123}I$, $^{99m}Tc$, and $^{18}F-FDG$, which are radioisotope drugs that are used directly by radiation workers in the nuclear medicine department in Korea are expected to receive a large dose of radiation in the lens in distribution and injection jobs to administer them to patients. The ED3 Active Extremity Dosimeter was used to measure the dose of the lens in the nuclear medicine and radiation workers and how much of the dose was received per 1 mCi.

Dose evaluation of workers according to operating time and outflow rate in a spent resin treatment facility

  • Byun, Jaehoon;Choi, Woo Nyun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3824-3836
    • /
    • 2021
  • Workers' safety from radiological exposure in a 1 ton/day capacity spent resin treatment facility was evaluated according to the operating times and outflow rate due to process related leakages. The conservative annual dose based on the operating times of the workers exceeded the dose limit by at least 7.38E+01 mSv for close work. The realistic dose range was derived as 1.62E+01 mSv-6.60E+01 mSv. The conservative and realistic annual doses for remote workers were 1.33E+01 mSv and 3.00E+00 mSv respectively, which were less than the dose limit. The MWR was identified as the major contributor to worker exposure within the 1 h period required for removal of radioactive materials. The dose considering both internal and external exposures without APF was derived to be 1.92E+01 mSv for conservative evaluation and 4.00E+00 mSv for realistic evaluation. Furthermore, the dose with APF was derived as 7.27E-01 mSv for conservative evaluation and 1.51E-01 mSv for realistic evaluation. Considering the APF for leakage from all parts, the dose range was derived as 1.25E+00 mSv-2.03E+00 mSv for conservative evaluation and 2.61E-01 mSv-4.23E-01 mSv for realistic evaluation. Hence, it was confirmed that radiological safety was secured in the event of a leakage accident.

Study in Occupational Exposure to Radiations and Radioactive Isotopes (방사선 및 방사성동위원소 근로자 피폭실태 연구)

  • Lee, Du-Yong;Kim, Kwang-Jin;Park, Hee-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.247-255
    • /
    • 2009
  • This study aims to provide basic data for establishing the safety and health plan by investigating the exposure conditions in the facilities registering business about handling radiations and radioactive isotopes in Korea. dose levels(working space, worker location) of the workers in 153 facilities were measured using surveymeter, and individual exposure concentration[(shallow dose(SD), depth dose(DD)] in 27 facilities using thermal luminescence dosimeter(TLD). In accordance with the measurement results by business type[fire fighting prevention business(FFPB, n=10), financial insurance business(FIB, n=3) and other facilities(n=140)] using surveymeter, those three business type groups showed difference (p<0.000). Dose levels of worker location for FFPB and FIB were significantly higher than 10.0 ${\mu}Sv$/hr, the allowable standard for radiations and radioactive isotopes, and they were higher 109.3 times(p<0.000) and 187.5 times(p<0.000) than those in other facilities. The concentration of TLD[FFPB(n=10), other facility (n=17)] in DD of FFPB was significantly higher than that in other facility(p=0.05). In accordance with the analysis result on relationship between surveymeter and TLD, the dose on working space and worker location(r=0.406, p<0.05), worker location dose and SD(r=0.453, p<0.05), worker location dose and DD(r=0.553, p<0.01), and SD and DD(r=0.927, p<0.001) had all related each other. It is urgently required to change FFPB and FIB from the facilities requiring registration for handling radiations and radioactive isotopes to the facilities that shall get permission for handling radiations and radioactive isotopes by reestablishing the legal administration area, for safety and health of radiation occupants.