DOI QR코드

DOI QR Code

Analysis of Air Activation in PET Cyclotron Facility

PET 사이클로트론 시설의 공기 방사화 분석

  • Jang, Dong-Gun (Department of Nuclear Medicine, Dongnam Institute of Radiological & Medical Sciences Cancer center) ;
  • Kang, Sesik (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Changsoo (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Junghoon (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 장동근 (동남권 원자력의학원 핵의학과) ;
  • 강세식 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2016.09.20
  • Accepted : 2016.11.30
  • Published : 2016.11.30

Abstract

Nuclear reaction which occurs in the cyclotron generate unnecessary neutrons. The results of this happening can radioactivate surrounding materials and radioactive materials cause radiation exposure. When people take radioactive air, it makes internal exposure. The purpose of this study was to analyze the radioactive air inside of the ultra-compact 16.5 MeV cyclotron in operation. As a result of study, the radio activation occurred by compact cyclotron generates a very low internal exposure to workers. Comparing the radioactivity from radioactive nuclide with legal standard, that was under reference value. However, it could be at risk for internal exposure in case of higher energy cyclotron. Therefore, legal standard is needed for ventilation equipment of radiation facilities.

사이클로트론에서 발생되는 핵반응은 불필요한 중성자를 발생시키며, 이로 인해 주변 물질들이 방사화되게 된다. 방사화된 물질은 방사선피폭의 원인으로, 공기가 방사화 되었을 경우 인체에 흡입되어 내부피폭을 발생 시킨다. 이에 본 연구에서는 16.5 MeV의 초소형 사이클로트론의 운영에 따른 내부 공기의 방사화를 분석하고자 하였다. 실험결과 초소형 사이클로트론의 핵반응으로 발생되는 방사화는 종사자에게 매우 낮은 내부피폭을 발생시키는 것을 확인할 수 있었으며, 방사화로 인하여 발생된 방사능을 법적 기준치와 비교하여 보았을 때 기준치 이하로 법적 관리의 대상에서 제외 될 수 있음을 알 수 있었다. 하지만, 사이클로트론의 에너지가 높아짐에 따라 내부피폭의 위험성은 더욱 높아질 우려가 있으며, 이에 따라 국내에 정립 되어 있지 않는 방사선 관련 시설의 환기설비에 대한 기준이 필요할 것으로 사료되었다.

Keywords

References

  1. S. M. Qaim, J. C. Clark, C. Crouzel, "Radiopharmaceuticals for Positron Emission Tomography" pp.1-43, 1993.
  2. N. E. Hertel, M. P. Shannon, Z. L. Wang, et al. "Neutron measurements in the vicinity of a self-shielded pet cyclotron", Radiation Protection Dosimetry, Vol. 108, No. 3, pp.255-261, 2004. https://doi.org/10.1093/rpd/nch026
  3. McGinley P. H., White TA Jr., "Air activation produced by high-energy medical accelerators", Medical Physics, Vol. 10, No. 6, pp.796-800, 1983. https://doi.org/10.1118/1.595358
  4. C. Birattari, M. Bonardi, A. Ferrari, et al, "Neutron Activation of Air by a Biomedical Cyclotron and an Assessment of Dose to Neighbourhood Populations", Radiation Protection Dosimetry, Vol. 14, No. 4, pp.311-319, 1986. https://doi.org/10.1093/oxfordjournals.rpd.a079662
  5. Junghoon Kim, Hee Geun Kim, JooHo Whang, "Measurement of Uptake Rates of Internal Organs Including Thyroid Gland and Daily Urinary Excretion Rates for Adult Korean Males", Journal of Radiation Protection, Vol. 32, No. 2, pp.45-50, 2007.
  6. ICRP, "Human respiratory tract model for radiological protection", Report 66 ICRP Publications, 1994.
  7. A. Ferrari, P. Sala, A. Fasso, J. Ranft, "FLUKA: A Multi-Particle Transport Code", CERN-2005-10, INFN/TC_05/11, SLAC-R-773, 2005.
  8. GE Healthcare, "PETtracer 800 series Service Manual-Accelerator", Direction 2169047-100, Rev. 22, 2015.
  9. ICRU, "Tissue substitutes in radiation dosimetry and measurement", Report 44 ICRU Publications, 1989.
  10. ENFORCEMENT DECREE OF THE NUCLEAR SAFETY ACT, Korea, 2016
  11. Nuclear Safety And Security Commission: notification 2013-49, 2013
  12. N. S. Jarvis, A. Birchall, A. C. James, et al., "LUDEP2.0. Personal Computer Program for Calculating Internal Doses Using the ICRP Publication 66 Respiratory Tract Model", NRPB-SR287, 1996.
  13. Si Young Kim, Cheol Kyu Choi, Il Park, et al., "Assessment of Inhalation Dose Sensitivity by Physicochemical Properties of Airborne Particulates Containing Naturally Occurring Radioactive Materials", Journal of Radiation protection and Research, Vol. 40, No. 4, pp.216-222, 2015. https://doi.org/10.14407/jrp.2015.40.4.216
  14. M. J. Hurley, D. T. Gottuk, J. R. Hall Jr., et al., "The SFPE Handbook of Fire Protection Engineering", pp.2416, 2016.
  15. Sung Ok Park, Sung-Min Ahn, Han-Jun Yang, et al., "Nuclear Medicine Science", pp.28-29, 2006.
  16. Jong-Seo Choi, "Recent Status of Commercial PET Cyclotron and KOTRON-13", Korean journal of nuclear medicine, Vol. 39, No. 1, 2005.
  17. P. Zanzonico, L. Dauer, J. S. Germain, "Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities", Health Physics, Vol. 95, No. 5, pp.554-570, 2008. https://doi.org/10.1097/01.HP.0000327651.15794.f7
  18. H. R. Vega-Carrillo, Hernandez-Almaraz, B. Hernandez-Davila, et al, "Neutron spectrum and doses in a 18 MV LINAC", Journal of Radioanalytical and Nuclear Chemistry, Vol. 283, No. 1, pp.261-265, 2010. https://doi.org/10.1007/s10967-009-0337-7
  19. M. D. Dorrian, M. R. Bailey, "Particle size distributions of radioactive aerosols measured in work places", Radiation Protection Dosimetry, Vol. 60, No. 2, pp.119-133, 1995. https://doi.org/10.1093/oxfordjournals.rpd.a082709
  20. Gong-Unn Kang, Sang-Bok Lee, "Daily Concentration Measurements of Water-soluble Inorganic Ions in the Atmospheric Fine Particulate for Respiratory Deposition Region", Korean Journal of Environmental Health, Vol. 31, No. 5, pp.387-397, 2005.
  21. ASHRAE, "ASHRAE Handbook HVAC Applications", Health Care Facilities Chapter, 2015.
  22. R. Calandrino, A. D. Vecchio, S. Todde, et al., "Measurement and Control of the Air Contamination Generated in a Medical Cyclotron Facility for PET Radiopharmaceuticals", Health Physics, Vol. 92, No. 5, pp.S70-S77, 2007. https://doi.org/10.1097/01.HP.0000253941.56400.76

Cited by

  1. 50 MeV 사이클로트론 조사 서비스로 인한 방사화 평가 vol.15, pp.4, 2016, https://doi.org/10.7742/jksr.2021.15.4.415