• Title/Summary/Keyword: Radioactive rays

Search Result 65, Processing Time 0.03 seconds

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

Study on the Geophysical Research Applications Using Radioactive Isotopes (I) Study on the Structures in Strata by Using γ-γ Logging Apparatus (방사성동위원소의 지구물리학적 응용에 관한 연구 γ-γ 검층법에 의한 지층구조에 관한연구)

  • Lee, Hyun Duk;Rho, Seung Gy
    • Economic and Environmental Geology
    • /
    • v.9 no.3
    • /
    • pp.135-141
    • /
    • 1976
  • The gamma-gamma logging method appplying in geophysical research are presented in this paper_ The logging probe assembly was designed which permits changing the source-to-detector spacing while conditions of proceeding ${\gamma}-{\gamma}$ logging, which a collimated gamma ray source ($^{60}Co$, 0.5mCi and/or 2 mCi) is separated from the scintillation detector as shown in Fig. 2 and 3, size is 6.0 cm in diameter and 120.0 cm in long and the exposed parts are made of stainless steel pipe. The results is confirmed by the experiment performed mainly in granite rock where a slightly constant shape was obtained but sometimes was shown sharpness shape for the measured scattered gamma-ray intensity. Consequently, the experimental results are obtained an adequate intensity of scattered gamma-rays and favourable response to density change, and also very closely correspond to between core samples of the test boring and to used this method of ${\gamma}-{\gamma}$ logging in the test bore-hole of the strata.

  • PDF

Characteristic Analysis of X-ray Device using the High Voltage Generator on Full-wave Rectification Method (전파정류방식의 고전압발생장치를 이용한 X선 기기의 특성 평가)

  • Kim, Young-Pyo;Kim, Tae-Gon;Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.516-521
    • /
    • 2009
  • X-ray system which is usefully used in diagnosis of the patient, being bombed of radioactivity is a big weak point when irradiates a X-ray to the human body so that ICRP restricted the radiation exposure tolerance of the human body. In order to reduce being bombed, the many research and development is now advanced. A lots of diagnostic X-ray machines have currently used due to the increase of occurrence efficiency of X-ray and precisely the output control by using the inverter which is a high speed switching semiconductors. For getting the confidence of the X-ray machine, the same radiation occurrence, same evaluation, and same irradiation condition are necessary when evaluates X-ray irradiation. It is the most important part for the accuracy of the test result and the patient safety. This research has produced the high voltage occurrence system of full-wave rectification method by using the LC resonance inverter, and evaluated the irradiation reproducibility in order to use it in diagnosis of the patient.

Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment

  • Kim, Jeong Ho;Park, Ki Hyun;Joo, Koan Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.801-805
    • /
    • 2018
  • In this study, an underwater radiation detector was built using a GAGG(Ce) scintillator and silicon photomultiplier to establish an underwater radiation exposure monitoring system. The GAGG(Ce) scintillator is suitable for small radiation detectors as it strongly absorbs gamma rays and has a high light emission rate with no deliquescent properties. Additionally, the silicon photomultiplier is a light sensor with characteristics such as small size and low applied voltage. Further, a program and mobile app were developed to monitor the radiation coefficient values generated from the detector. According to the results of the evaluation of the characteristics of the underwater radiation monitoring system, when tested for its responsiveness to radiation intensity and reactivity, the system exhibited a coefficient of determination of at least 0.99 with respect to the radiation source distance. Additionally, when tested for its underwater environmental temperature dependence, the monitoring system exhibited an increase in the count rate up to a certain temperature because of the increasing dark current and a decrease in the count rate because of decreasing overvoltage. Extended studies based on the results of this study are expected to greatly contribute to immediate and continuing evaluation of the degree of radioactive contamination in underwater environments.

Determination of Si (Li) Detector Efficiency Using Electro-Deposition Sources in 5-15 keV Photon Energy Range (5-15 keV 에너지 범위에서 전기증착 선원을 사용한 Si (Li) 검출기 효율결정)

  • Jeon, Woo-Ju;Park, Tae-Soon;Hwang, Sun-Tae;Joo, Koan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.548-554
    • /
    • 1994
  • The full-energy peak efficiency for a collimated geometry of a Si (Li) detector has been experimentally determined using the electro-deposition sources. The radioactive sources of $^{51}$ Cr, $^{54}$ Mn, $^{57}$ Co and $^{65}$ Zn nuclides are prepared by the electro-deposition method. The measured efficiency values are corrected for the escape losses due to the K X-rays of silicon and the absorptions in materials related to source-to-detector geometry. The corrected efficiency values have turned out to be nearly constant regardless of photon energy.

  • PDF

Extensive investigations of photon interaction properties for ZnxTe100- x alloys

  • Singh, Harinder;Sharma, Jeewan;Singh, Tejbir
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1364-1371
    • /
    • 2018
  • An extensive investigation of photon interaction properties has been made for $Zn_xTe_{100-x}$ alloys (where x = 5, 20, 30, 40, 50) to explore its possible use in sensing and shielding gamma radiations. The results show better and stable response of ZnTe alloys for various photon interaction properties over the wide energy range, with an additional benefit of ease in fabrication due to lower melting points of Zn and Te. Mass attenuation coefficient values show strong dependence on photon energy as well as composition. Effective atomic number has maximum value for $Zn_5Te_{95}$ and lowest for $Zn_{50}Te_{50}$ in the entire energy region. The alloy sample with maximum $Z_{eff}$ shows minimal value of $N_e$ and vice versa. Mean free path follows inverse trend as observed for mass attenuation coefficient. The exposure and energy absorption buildup factors depend upon photon energy, penetration thickness and composition (effective atomic number) of $Zn_xTe_{100-x}$ alloys. It finds its application for sensing and shielding from highly energetic and highly penetrating photons at sites where radioactive materials were used and visibility of material is not a big constraint. Further, energy down conversion property of ZnTe alloys with subsequent emission in green band suggests its potential use in sensing gamma photons.

Evaluation of Minimum Detectable Activity for Underwater Radiation Monitoring System (수중 방사선 모니터링 시스템의 성능평가를 위한 수중 내 최소검출가능농도 산출)

  • Jangguen Park;Sung-Hee Jung;Daemin Oh;Jinho Moon
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.219-224
    • /
    • 2023
  • A high-efficiency underwater radiation monitoring system, HydroGamma, has been developed for detecting 137Cs and 131I in the event of waterborne radiation contamination. The system consists of a 3-inch NaI (Tl) detector, solar panels for power supply, data acquisition and transmission modules, and batteries. HydroGamma also includes a 40K calibration source for remote performance evaluation and energy calibration. In this study, some simulations and experiments were carried out to evaluate the minimum detectable activities (MDA) of HydroGamma. We installed the HydroGamma at Tapjeongho Lake in Nonsan-si and acquired background data since MDA is calculated based on the experimental background data. The results show that the minimum detectable activities for 137Cs and 131I were 1.78Bq L-1 and 1.81Bq L-1, respectively even though the gamma rays emitted from 40K(1,460 keV) affect the minimum detectable activities for them.

Radiation Proctitis and Management Strategies

  • Dushyant Singh Dahiya;Asim Kichloo;Faiz Tuma;Michael Albosta;Farah Wani
    • Clinical Endoscopy
    • /
    • v.55 no.1
    • /
    • pp.22-32
    • /
    • 2022
  • Radiotherapy (RT) is a treatment modality that uses high-energy rays or radioactive agents to generate ionizing radiation against rapidly dividing cells. The main objective of using radiation in cancer therapy is to impair or halt the division of the tumor cells. Over the past few decades, advancements in technology, the introduction of newer methods of RT, and a better understanding of the pathophysiology of cancers have enabled physicians to deliver doses of radiation that match the exact dimensions of the tumor for greater efficacy, with minimal exposure of the surrounding tissues. However, RT has numerous complications, the most common being radiation proctitis (RP). It is characterized by damage to the rectal epithelium by secondary ionizing radiation. Based on the onset of signs and symptoms, post-radiotherapy RP can be classified as acute or chronic, each with varying levels of severity and complication rates. The treatment options available for RP are limited, with most of the data on treatment available from case reports or small studies. Here, we describe the types of RT used in modern-day medicine and radiation-mediated tissue injury. We have primarily focused on the classification, epidemiology, pathogenesis, clinical features, treatment strategies, complications, and prognosis of RP.

Determinations of the Exposure Rate Using a NaI(Tl) Detector of the Environmental Radiation Monitor (환경방사선감시기의 NaI(Tl) 검출기를 이용한 조사선량률 결정방법)

  • Ji, Young-Yong;Lee, Wanno;Choi, Sang-Do;Chung, Kun Ho;Kang, Mun Ja;Choi, Geun-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.245-251
    • /
    • 2013
  • The energy band and the G-factor method were compared to determine the exposure rate from the measured spectrum using a NaI(Tl) scintillation detector. First, G-factors of a 3"${\Phi}X3$" NaI(Tl) detector mounted to a EFRD 3300, which means the environmental radiation monitor, in Korea Atomic Energy Research Institute (KAERI) were calculated for several directions of incident photons through the MCNP modeling, and the optimum G-factor applicable to that monitor was then determined by comparing the results both the energy band method and the G-factor method. The results for these spectrometric determinations were also compared with the dose rate from a HPIC radiation monitor around a EFRD 3300. The measured value at the EFRD 3300 based on a 3"${\Phi}X3$" NaI(Tl) detector was $7.7{\mu}R/h$ and its difference was shown about $3{\mu}R/h$, when compared with the results from a HPIC radiation moditor. Since a HPIC is known to be able to measure cosmic rays with the relatively high energy, the difference between them was caused by cosmic rays which were not detected in a 3"${\Phi}X3$" NaI(Tl) detector.

Coexpression of PCNA and p21 for DNA repair in small intestinal crypt cells of mouse with 60Co γ-rays irradiation (방사선을 조사한 마우스의 소장 음와세포에서 DNA 수복을 위한 PCNA와 p21의 발현 양상)

  • Hong, Suji;Hwang, Insun;Ahn, Meejung;Shin, Taekyun;Joo, Hong-gu;Park, HyunJeong;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.457-464
    • /
    • 2005
  • The irradiation of radioactive ${\gamma}-ray$ induces apoptosis of radiosensitive organs for homeostasis. In this study, we investigated the repair mechanisms for homeostasis in the small intestine after cell damage by $^{60}Co\;{\gamma}-ray$ irradiation. The apoptosis was most frequently observed in the crypt cells of the small intestine after four and six hours by radioactive ${\gamma}-ray$ irradiation, and the frequency of apoptosis was proportional to the amount of irradiation. Also, the number of apoptotic cells was coincident with expression pattern of p53. Interestingly, PCNA (proliferating cell nuclear antigen) which is engaged in DNA replication and repair was expressed in apoptotic cells of small intestinal crypts. Also, it was observed that cell-cycle regulator p21 which is known to induce cell-cycle arrest is co-expressed in the same apoptotic cells of irradiated small intestinal crypt cells. These findings suggest that the co-expression of PCNA and p21 proteins, which may lead to resistance to DNA damage through cell-cycle arrest is closely associated with repair of damaged gastrointestinal cells after ${\gamma}-ray$ irradiation.