• 제목/요약/키워드: Radioactive concentration

Search Result 444, Processing Time 0.025 seconds

Proposal of Application Method for Concentration Averaging of Radioactive Waste in Korea by Using CA BTP of US NRC

  • Jiyoung Yi;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.347-357
    • /
    • 2023
  • United States Nuclear Regulatory Commission (U.S. NRC) specifies regulations on obtaining licenses and describes the technical position on the average waste concentration, also known as Concentration Averaging and Encapsulation Branch Technical Position (CA BTP); CA BTP helps classify blendable waste and discrete items and address concentration averaging. The technical position details are reviewed and compared in a real environment in Korea. A few cases of concentration averaging based on the application of CA BTP to domestic radioactive waste are presented, and the feasibility of the application is assessed. The radioactive waste considered herein does not satisfy the Disposal Concentration Limit (DCL) of the second-phase disposal facility while applying the preliminary classification. However, if CA BTP is applied when the radioactive waste is mixed with other radioactive waste items in a large and heavy container, it can be disposed of at the second-phase disposal facility in Gyeongju Repository. To apply the CA BTP of the U.S. NRC, it is necessary to investigate the safety assessment conditions of the US and Korea.

Determination of Radionuclide Concentration Limit for Low and Intermediate-level Radioactive Waste Disposal Facility I : Application of IAEA Methodology for Underground Silo Type Disposal Facility (중저준위 방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 I : IAEA 방법론의 동굴처분시설 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • For the safe disposal of intermediate level radioactive waste according to the Nuclear Safety and Security Commission's notice and KORAD's management plan for low and intermediate level radioactive waste, the disposal concentration limit was derived based on the IAEA methodology. The evaluation of the derived disposal concentration limit revealed that it is not suitable as a practical limit for intermediate level radioactive waste. This is because the disposal concentration limit according to the IAEA methodology is derived using a single value of radioactive waste density and the disposal facility's volume. The IAEA methodology is suitable for setting the concentration limit for vault type disposal, which consists of a single type of waste, whereas an underground silo type disposal facility is composed of several types of radioactive waste, and thus the IAEA methodology has limitations in determining the disposal concentration limit. It is necessary to develop and apply an improved method to derive the disposal concentration limit for intermediate level radioactive waste by considering the radioactivity of various types of radioactive waste, the corresponding scenario evaluation results, and the regulatory limit.

Determination of Radionuclide Concentration Limit for Low and Intermediate-Level Radioactive Waste Disposal Facility II: Application of Optimization Methodology for Underground Silo Type Disposal Facility (중저준위방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 II: 최적화 방법론 개발 및 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.265-279
    • /
    • 2017
  • The Gyeongju underground silo type disposal facility, approved for use in December 2014, is in operation for the disposal of low and very low-level radioactive wastes, excluding intermediate-level waste. That is why the existing low-level radioactive waste level has been subdivided and the concentration limit value for intermediate-level waste has been changed in accordance with Nuclear Safety Commission Notice 2014-003. For the safe disposal of intermediate-level wastes, new optimization methodology for calculating the concentration limit of intermediate radioactive level wastes at an underground silo type disposal facility was developed. According to the developed optimization methodology, concentration limits of intermediate-level wastes were derived and the inventory of radioactive nuclides was evaluated. The operation and post closure scenarios were evaluated for the derived radioactive nuclide inventory and the results of all scenarios were confirmed to meet the regulatory limit. However, in case of $^{14}C$, it was confirmed that additional radioactivity limitation through a well scenario was needed in addition to the limit of disposal concentration. It was confirmed that the derived intermediate concentration limit of radioactive waste can be used as the intermediate-level waste concentration limit for the underground disposal facility. For the safe disposal of intermediate-level wastes, KORAD plans to acquire additional data from the radioactive waste generator and manage the cumulative radioactivity of $^{14}C$.

The Analysis of radioactivity Concentration in drainage when using a radioactive Iodine (방사성옥소 사용 시 배수 중 방사능농도 분석)

  • Lee, Kyung-Jae;Sul, Jin-Hyung;Park, Young-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2018
  • Purpose With regard to the use of radioiodine in domestic medical institution, the case of exceeding the allowance of nuclear safety Act about radioactive concentration in drainage was found. Through understanding the cause of exceeding case and analyzing radioactive concentration in drainage, evaluating the relationship of the public waters in surroundings and usefulness. Materials and Methods From November 1, 2014 to April 30th, 2015, the research is aiming at domestic twenty hospitals for six months. By using a HPGe gamma-ray spectrometer(Canberra DSA-1000) and GENIE-2000 Analysis software for comparative analysis, measuring a radioactive concentration of radioiodine in drainage. Consequently, we confirm the excess of radioactive concentration of radioiodine in seven medical institutions. Results Conducting a survey of twenty hospitals and average radioactive concentration of radioiodine in drainage appears $42,100Bq/m^3$. The features of domestic hospitals where show a high radioactive concentration are a number of medical treatment patient when using radioactive iodine and the absence of private rest room. During I-131 whole body scan, the pretreatment procedure of urinating is considered emission of residual Iodine. In public waters, the cause of exceeding detect on radioactive concentration in drainage suppose a diagnostic radioactive iodine. Conclusion We confirm the importance of enhanced education, providing a safety control instructions and installing a private rest rooms for patients who injected a low capacity radioiodine. Also, constructing institutional and legal management system is considered about the Emission management standard in drainage.

Fundamental study on volume reduction of cesium contaminated soil by using magnetic force-assisted selection pipe

  • Nishimura, Ryosei;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.26-31
    • /
    • 2021
  • Advanced classification of Cs contaminated soil by using a magnetic force-assisted selection pipe was investigated. A selection pipe is a device that sort particles depending on their particle size, based on the relationship between buoyancy, drag, and gravity force acting on the particles. Radioactive cesium is concentrated in small-particle size soil components with a large specific surface area. Hence, the volume of the Cs contaminated soil can be reduced by recycling the large-particle size soil components with low radioactive concentration. One of the problems of the selection pipe was that the radioactive concentration of the stayed soil in the selection pipe exceeds 8000 Bq/kg, which is the standard value of recycling of Cs contaminated soil, due to low classification accuracy. In this study, magnetic fields were applied to the lab-scale selection pipe from upper side to improve the classification accuracy and to reduce the radioactive concentration of the stayed soil.

Evaluation of 18F Radioactive Concentration in Exhaust at Cyclotron Facility at Chosun University

  • Jeong, Cheol-ki;Jang, Han;Lee, Goung-jin
    • Journal of Radiation Industry
    • /
    • v.10 no.1
    • /
    • pp.37-41
    • /
    • 2016
  • The recent prevalence of PET examinations in Korea has led to an increase in the number of cyclotrons. The medical isotope $^{18}F$ produced in most cyclotron facilities currently operating in Korea is emitted into the environment during the production of [$^{18}F$]FDG, a cancerdiagnosis reagent. The amount of [$^{18}F$]FDG synthesized determines the radioactive concentration of $^{18}F$ in the exhaust. At some facilities, this amount temporarily exceeds the emission limit. In this study, we evaluated the $^{18}F$ radioactivity concentration in the exhaust from the cyclotron facility at Chosun University. The $^{18}F$ radioactivity concentration was measured using an air sampler and a HPGe semiconductor detector. The measurements showed that the radioactive concentration of $^{18}F$ in the exhaust at the cyclotron facility at Chosun University was the highest during [$^{18}F$]FDG synthesis but remained under the legal limit of $2,000Bq\;m^{-3}$.

A study on the effect of material impurity concentration on radioactive waste levels for plans for decommissioning of nuclear power plant

  • Gilyong Cha;Minhye Lee;Soonyoung Kim;Minchul Kim;Hyunmin Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2489-2497
    • /
    • 2023
  • Co and Eu impurities in the SSCs are nuclides that dominantly influence the neutron-induced radioactive inventory in metal and concrete radwastes (radioactive wastes) during NPP decommission. The impurity concentrations provided by NUREG/CR-3474 were used for the practical range of Co and Eu impurity concentrations to be applied to the code calculations. Metal structures near the core were evaluated to be ILW (intermediate-level waste) for the whole range of Co impurity concentration, so the boundary line between ILW and LLW (low-level waste) has no change for the whole concentration range provided by NUREG/CR-3474. Also, the boundary line between VLLW (very low-level waste) and CW (clearance waste) in the concrete shield could alter a little depending on the Eu impurity concentration within the range provided by NUREG/CR-3474. From this work, it is found that the concentration of material impurities of SSCs gives no critical impact on determining radwaste levels.

Effectsof absorbed radioactive sulfur $S^35$ in plant cell. II. Effects of sulfur on the growth and tissue respiration of rye seedlings (식물에 미치는 방사성 동위원소 $S^35$의 영향에 대하여 (제2보) 발아호밀의 생장 및 조섬호흡에 미치는 영향)

  • 홍순우
    • Journal of Plant Biology
    • /
    • v.8 no.1_2
    • /
    • pp.5-10
    • /
    • 1965
  • The effect of radioactive sulfur-35 on the growth and tissue respiration in rye, Secale cereale L., seedlings were studied in this investigation. The growth and respiration rate of the materials treated with the different intensities of radioactivity, represented by the different concentration(${\mu}c$) of radioactive sulfur were shown similar effects in treated groups as those of Gamma-ray or X-ray irradiation on plant materials. However, in the groups of ($0.1{\mu}c$ and ($0.4{\mu}c$ S35-solution, the growth and respiration rate were stimulated somewhat more clearly than in case of control. And the higher concentration groups, $1.6{\mu}c$, $6.4{\mu}c$, and $25.6{\mu}c$ were depressed of the growth and tissue respiration rate. The present data could be explained on the basis that the higher concentration treatments with the radioactive isotope did produce injury to the plant metabolism generally, but the moderate treatment would stimulate to the plant growth and tissue respiration.

  • PDF