• Title/Summary/Keyword: Radio frequency wave

Search Result 329, Processing Time 0.03 seconds

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh, Kyoung-Whoan;Lee, Joo-Hwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.125-130
    • /
    • 2005
  • This paper suggests an efficient method of protection ratio calculation and shows some calculated results applicable to frequency coordination in microwave relay system networks, and the net filter discrimination (NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively, In addition, NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

  • PDF

A planar half-disk UWB antennas having a notch function (노치 기능을 가지는 반원 형태의 UWB 안테나)

  • Lee, Hyo-K.;Jang, Mi-H.;Lee, Yoon-J.;Park, Jong-K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.205-210
    • /
    • 2005
  • In this paper, a planar half-circle shape ultra-wideband(UWB) antenna fed by CPW is designed, fabricated and measured for UWB communications. Within the UWB band(3.1 GHz $\sim$ 10.6 GHz), 5.15 GHz $\sim$ 5.825 GHz frequency band is used by IEEE 802.lla WLAN applications. It may be necessary to notch out this band to avoid interference with IEEE 802.lla WLAN. Therefore, we have proposed three kinds of UWB antennas having a notch function, such as a rectangular slot, a hat-shaped slot, a circle-shaped slot. The notch frequency of the proposed antenna can be adjusted by controlling the slot length or slot width. From the measured results, the proposed antennas show a good gain flatness except the IEEE 802.lla WLAN frequency band and have a reasonable agreement with simulated results.

  • PDF

The study on the EIRP measurement methods considering Antenna Gain (안테나 이득을 고려한 EIRP 측정 방법에 관한 연구)

  • Kim, Dong-Ho;Choi, Dong-Geun;Shin, Chan-Soo;Sin, Ho-Seop;Kim, Nam
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.555-559
    • /
    • 2003
  • Recently, in accordance with the commercialization of novel radio frequency utilization technologies, the radiated power must be rigorously limited for the purpose of protection of wireless facilities against frequency jamming or interference and for maintaining the quality of communication service. At present, the output power is measured from the conducted power for the domestic measurement criterion but is not a real radiated power and inaccurate. So, it is peformed to survey the more precisely accurate measurement scheme and analyze its criterion and methodology in comparison with foreign one. As a result of surveying and analyzing, it is concluded that the U.S. and E.U. is actually using the measurement method in consideration of terms of the Equivalent Isotropic Radiated Power(EIRP) and Effective Radiated power(ERP). In case of the frequency below 1 GHz, the half wave-length dipole antenna is used to measure the ERP and above 1 GHz the horn antenna as a reference antenna is used to measure the EIRP. Therefore, for the domestic purpose it is also necessary to take EIRP and ERP into consideration as a measurement criterion in order to make an accurate measurement and regulation.

  • PDF

Synthesis of Forsterite with High Q and Near Zero TCf for Microwave/Millimeterwave Dielectrics

  • Ohsato, Hitoshi;Ando, Minato;Tsunooka, Tsutomu
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.597-606
    • /
    • 2007
  • With the advent of ubiquitous age, the high quality dielectric materials have been required for the wireless communications available to the millimeterwave as well as microwave frequencies. The utilizable region for the frequency has been expanding to the millimeter-wave region because of the shortage of radio frequency (RF) resources. These high frequencies would be expected for ultra high speed LAN, ETS and car anti-collision system on the intelligent transport system (ITS) and so on. Silicates are good candidates for microwave/millimeterwave dielectrics, because of their low dielectric constant ${\epsilon}_r$ and high quality factor (High Q). Forsterite ($Mg_2SiO_4$) is one of the silicates with low ${\epsilon}_r$ of 6.8 and Q f of 240000 GHz. In this paper, we reviewed following three categories for synthesis of forsterite: (1) Synthesis of high Q forsterite (2) Adjust the temperature coefficient of resonant frequency $TC_f$ (3) Diffusion of $SiO_{4^-}$ and Mg-ions on the formation of forsterite.

Polarization-Dependent Electromagnetically-Induced Transparency by Using Metamaterial (편광 상태와 메타 물질을 이용한 전자기파 유도 에너지 전달 제어)

  • Park, Jin-Woo;Kim, Sung-Il;Jang, Won-Ho;Lee, Young-Pak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.406-409
    • /
    • 2012
  • The classical electromagnetically-induced transparency(EIT)-like switching in metamaterial was experimentally and theoretically demonstrated in the microwave-frequency region. The metamaterial unit cell consists of two identical split-ring resonators, which are arranged on both sides of a dielectric substrate with asymmetry. It is found that the classical EIT-like switching can be achieved by changing the polarization of the incident electromagnetic wave. The results of this study are promising for practical applications.

Design of ECG/PPG Gating System in MRI Environment (MRI용 심전도/혈류 게이팅 시스템 설계)

  • Jang, Bong-Ryeol;Park, Ho-Dong;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.132-138
    • /
    • 2007
  • MR(magnetic resonance) image of moving organ such as heart shows serious distortion of MR image due to motion itself. To eliminate motion artifacts, MRI(magnetic resonance imaging) scan sequences requires a trigger pulse like ECG(electro-cardiography) R-wave. ECG-gating using cardiac cycle synchronizes the MRI sequence acquisition to the R-wave in order to eliminate image motion artifacts. In this paper, we designed ECG/PPG(photo-plethysmography) gating system which is for eliminating motion artifacts due to moving organ. This system uses nonmagnetic carbon electrodes, lead wire and shield case for minimizing RF(radio-frequency) pulse and gradient effect. Also, we developed a ECG circuit for preventing saturation by magnetic field and a finger plethysmography sensor using optic fiber. And then, gating pulse is generated by adaptive filtering based on NLMS(normalized least mean square) algorithm. To evaluate the developed system, we measured and compared MR imaging of heart and neck with and without ECG/PPG gating system. As a result, we could get a clean image to be used in clinically. In conclusion, the designed ECG/PPG gating system could be useful method when we get MR imaging of moving organ like a heart.

A Study on Development of Ferrite Wave Absorber with Cutting Corn-Shaped Type (원추절단형 폐라이트 전파흡수체의 최적설계 및 제작에 관한 연구)

  • 김동일;박종구;정세모;이영구
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.153-156
    • /
    • 2000
  • The remarkable progress of electronics and radio communications technology has made our life abundant. On the other hand, the countermeasure of EMC becomes more important socially according to the increased use of electromagnetic waves. It had been required that the absorbing ability of an electromagnetic wave absorber is more than 20 dB, the bandwidth of which is required through 30 MHz to 1,000 MHz for satisfying the international standard about an anechoic chamber for EMI/EMS measurement. From November of 1998, however, the CISPR11 has accepted the extended frequency band from 30 MHz to 18 GHz in the bandwidth of EMI measurement. In this paper, we proposed the cutting com-shaped type satisfying the above requirments and carried out broadband design using the equivalent material constants method. Moreover, we have fabricated it and compared its characteristics with simulated one.

  • PDF

Development of Broad-band Electromagnetic Wave Aborbers in Cut Corn and Cylinder Types (원추절단형 및 원기둥형 광대역 페라이트 전파흡수체 개발에 관한 연구)

  • 김동일;박종구;원영수;이영구;정세모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.900-906
    • /
    • 2000
  • The remarkable progress of electronics and radio communications technology has made our life abundant. On the other hand, the countermeasure of EMl/EMC becomes more important socially according to the increased use of electromagnetic waves. It had been required that the absorbing ability of an electromagnetic wave absorber is more than 20 dB, the bandwidth of which is required through 30 MHz to 1,000 MHz for satisfying the international standard about an anechoic chamber for EMl/EMS measurement. From November of 1998, however, the CISPR11 has accepted the extended frequency band to 18 GHz in the bandwidth of EMI measurement. In this paper, we proposed the cut corn type and cylinder type absorbers satisfying the above requirments and carried out broadband design using the equivalent material constants method.

  • PDF

A Study on Development of Ferrite Wave Absorber with Cutting Corn-Shaped Type (원추절단형 페라이트 전파흡수체의 최적설계 및 제작에 관한 연구)

  • 김동일;박종구;정세모;이영구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.721-726
    • /
    • 2000
  • The remarkable progress of electronics and radio communications technology has made our life abundant. On the other hand, the countermeasure of EMC becomes more important socially according to the increased use of electromagnetic waves. It had been required that the absorbing ability of an electromagnetic wave absorber is mote than 20 dB, the bandwidth of which is required through 30 MHz to 1,000 MHB for satisfying the international standard about an anechoic chamber lot EMl/EMS measurement. From November of 1998, however, the CISPR11 has accepted the extended frequency band from 30 MHz to 18 GHz in the bandwidth of EMI measurement. In this paper, we proposed the cutting corn-shaped type satisfying the above requirements and carried out broadband design using the equivalent material constants method. Moreover, we have fabricated it and compared its characteristics with simulated one.

  • PDF

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF