• Title/Summary/Keyword: Radio Transceiver

Search Result 141, Processing Time 0.03 seconds

Design and Fabrication of 400MHz ISM-Band GFSK Transceiver for Data Communication (400MHz ISM대역 데이터 통신용 GFSK 송.수신기 설계 및 제작)

  • Lee, Hang-Soo;Jang, Rae-Kyu;Hong, Sung-Yong;Lee, Seung-Min
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.401-406
    • /
    • 2005
  • The GFSK Transceiver of 400MHz ISM band for data communication is designed and fabricated. To reduce the occupied bandwidth of transmitted signal, the GFSK modulation is selected. The measured results of fabricated transceiver show the data rate of 2400bps at 8.5kHz bandwidth, frequency deviation of less than $\pm$3kHz, sensitivity of -111dBm, SNR of 21.58dB. The fabricated transceiver is satisfied with the regulation of radio wave and has the good performance. This transceiver is well suited for data communication of 400MHz ISM band.

  • PDF

RF Transceiver Design for Impulse Radio UWB System (임펄스 UWB 시스템을 위한 RF 송수신기 설계)

  • Park, Joo-Ho;Oh, Mi-Kyung;Oh, Jung-Yeol;Kil, Min-Su;Kim, Jae-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • In this paper, we design RF transceiver architecture and building blocks for impulse radio UWB system. Impulse radio UWB signal occupies the wide frequency band which is very low transmission power. So, it can minimize the interference effect with the other system. Using UWB technology, we obtain position awareness service. Therefore, we describe the RF transceiver architecture of direct conversion receiver and define the requirement of RF transceiver. Moreover, we implement a prototype RF transceiver based on the presented standard and verify a function and performance through the wireless data communication and ranging test.

  • PDF

Software-defined Radio (SDR): An Approach to Real-Time Video Data Transceiver Implementation (소프트웨어 정의 라디오: 실시간 동영상 데이터 송수신기 구현에 대한 접근)

  • Dongho You
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.149-152
    • /
    • 2023
  • In this paper, I present an approach to implement a real-time video transceiver using software-defined radio (SDR). Through this, it is expected that it will be able to lower the access threshold and provide new perspectives and insights to researchers who want to study the recently spotlighted Open Radio Access Network (O-RAN) and implement it through SDR devices and open software.

A Performance Study of Tactical Data Link Transceiver in TDMA Networks (TDMA 네트워크 전술데이터링크 송수신기 구현 및 성능고찰)

  • Nam, Jeong-Ho;Seo, Nan-Sol;Jang, Dhong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.388-396
    • /
    • 2010
  • Generally, flight information is transmitted by voice signal over legacy UHF radio in ground to air communication system. In this paper, we have implemented the transceiver of TDL(tactical data link) which transmits tactical information, such as flight information, using digital signal. For transmitting digital information over radio path, we have designed data modem that is processing CPFSK modulation, and TDMA(Time Division Multiple Access) network for Synchronization among multi user(platform). By simulating aeronautical propagation modeling with the environment of Korea terrain, it is predicted the maximum performance of communication range of the transceiver. As result of the transceiver's aviational boarding test, it is proved that the transceiver of TDL over legacy UHF radio transmits and receives the tactical information in TDMA network within communication range of 160km.

A Design of the Radio Transceiver of ISM band for Remote Monitor and Control System via Radio (무선 원격 감시 및 제어를 위한 ISM대역 송수신기 설계)

  • 김기래;김영주;김진복
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.238-241
    • /
    • 2001
  • In this paper, we designed the video transceiver and control data transceiver of ISM bands. They are designed according to the law for radio regulation and can communicate with each other by about 1Km. Also, we developed the remote monitor and control system via radio using designed transceivers for ISM band.

  • PDF

Design and Fabrication of 400 MHz ISM-Band GFSK Transceiver for Data Communication (400 MHz ISM 대역 데이터 통신용 GFSK 송·수신기 설계 및 제작)

  • Lee Hang-Soo;Hong Sung-Yong;Lee Seung-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.198-206
    • /
    • 2006
  • The GFSK Transceiver of 400 MHz ISM band for data communication is designed and fabricated. To reduce the occupied bandwidth of transmitted signal, the GFSK modulation is selected. The measured results of fabricated transceiver show the data rate of 2,400 bps at 8.5 kHz bandwidth, frequency deviation of less than ${\pm}3\;kHz$, sensitivity of -107 dBm at SINAD of 20 dB, BER of less than $1.8{\times}10^{-3}$ at -110 dBm input power. The fabricated transceiver is satisfied with the regulation of radio wave and has the good performance.

Implementation of Filter Bank-Based RF Transceiver for TV White Space

  • Kang, Kyu-Min;Park, Jae Cheol;Park, Seungkeun
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1077-1086
    • /
    • 2015
  • This paper presents a general-purpose design scheme of a filter bank (FB)-based radio frequency (RF) transceiver that operates across the entire ultra-high frequency (UHF) TV band from 470 MHz to 698 MHz and complies with the TV white space (TVWS) regulatory requirements. To this end, an intermediate frequency (IF) band-pass filter (BPF) with a sharp skirt characteristic is considered as a solution for handling the incoming signals from a baseband modem. Specifically, an FB-based BPF structure with four ceramic resonator filters that effectively rejects unwanted signals is proposed to extract a desired signal in the TV band. Achievable data rates of a cognitive radio system (CRS) employing the proposed FB-based RF transceiver at the application layer are investigated in both wired and wireless environments. The service coverage of the CRS network is measured according to several modulation and coding schemes (MCSs) of the CRS. The results show that the coverage of a wireless network in a nearly open area can be extended by more than 9.3 km in the TVWS. Experimental results also confirm that the proposed FB-based RF transceiver is adequate for utilization in TVWS applications.

Implementation of a RF transceiver for WRAN System Using Cognitive Radio Technology in TV Whitespace Band (Cognitive Radio 기술 기반의 TV Whitespace대역 WRAN 시스템의 RF 송.수신기 구현)

  • Min, Jun-Ki;Hwang, Sung-Ho;Kim, Ki-Hong;Park, Yong-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.496-503
    • /
    • 2010
  • The implementation of a RF transceiver for WRAN(Wireless Regional Area Network) system based on IEEE 802.22 standard using Cognitive Radio technology is presented in this paper. A CMOS RF transceiver IC for WRAN system operates in VHF/UHF(54~862MHz) broadband, and employs dual-path direct-conversion configuration and the in-band harmonic distortions are effectively suppressed by exploiting the dual-path direct conversion architecture. For 64QAM(3/4 coding rate) OFDM signal, an EVM of <-31.4dB(2.7%) has been achieved at 10dBm off-chip PA output power and the total chip area with pads is 12.95 mm2. The experimental results show that the proposed CMOS RF transceiver IC has perfect performance for WRAN system based on TDD(Time Division Duplex) mode.

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network (WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법)

  • Gyu-won Kim;Yu-jung Kim;Junghwan Han
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • This paper discusses the design of bio-implanted ultra-low-power MICS RF transceivers for wireless sensor networks. The 400 MHz MICS standard was considered for the implementation of the WBAN wireless sensor system, indirectly minimizing radio propagation losses in the human body and the inference with surrounding networks. This paper includes link budget, various transmission and reception architectures for a system design and ultra-low power transceiver circuit techniques for the implementation of RF transceivers that meet MICS standards.