• Title/Summary/Keyword: Radiative electric field

Search Result 4, Processing Time 0.022 seconds

Calculation of Radiative Electric Field Intensity of Overhead Medium-Voltage Power lines for Power Line Communication (전력선통신을 위한 고압 배전선로의 방사전계강도 계산)

  • Chun Dong-wan;Park Young-jin;Kim Kwan-ho;Shin Chull-chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1136-1146
    • /
    • 2005
  • In this paper, the radiative electric field intensity due to the communication signal and conductive noise is calculated in overhead medium voltage power lines for power line communication. The input impedance is calculated by means of 2 port equivalent model of medium voltage power line network and basic transmission line theory. And then, currents is calculated by calculated input impedance and finally, the emissive electric field is calculated. The input impedance appears like a standing wave form with a fixed cycle because high reflection at the input terminal due to the characteristic impedance of medium voltage power line is very large. A calculated current and radiative electric field also appears like this form. From the measurement results, the measured results are very similar to the calculated results.

Effects of Multiple Reflections of Polarized Beam in Laser Grooving (레이저 홈가공에서 편광빔의 다중반사 효과)

  • Bang Se-Yoon;Seong Kwan-Je
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.81-89
    • /
    • 2005
  • A numerical model for multiple reflection effects of a polarized beam on laser grooving has been developed. The surface of the treated material is assumed to reflect laser irradiation in a fully specular fashion. Combining electromagnetic wave theory with Fresnel's relation, the reflective behavior of a groove surface can be obtained as well as the change of the polarization status in the reflected wave field. The material surface is divided into a number of rectangular patches using a bicubic surface representation method. The net radiative flux far these patch elements is obtained by standard ray tracing methods. The changing state of polarization of the electric field after reflection was included in the ray tracing method. The resulting radiative flux is combined with a set of three-dimensional conduction equations governing conduction losses into the medium, and the resulting groove shape and depth are found through iterative procedures. It is observed that reflections of a polarized beam play an important role not only in increasing the material removal rate but also in forming different final groove shapes. Comparison with available experimental results for silicon nitride shows good agreement for the qualitative trends of the dependence of groove shapes on the electric field vector orientation.

Dielectric Cylinder Optical Amplifier (원통형 유전체 광 증폭기에 대한 연구)

  • 이성수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.146-147
    • /
    • 2000
  • The electromagnetic wave scattering from active objects has only recently attracted attention.$^{(1).(3)}$ Theoretical studies have considered normal-incidence plane-wave interactions with active dielectric cylinders with the prediction of large enhancements in the scattered field for bound mode structures. According to the theory of the electromagnetic wave scattering from a dielectric cylinder, the eigenvector solutions are discrete and have both guided (non-radiative) and leaky (radiative) mode solutions. By using an anti-guiding (leaky) structure instead of a guided structure and scattering at oblique incident angles near critical angle, the scattering resonances predicted by theoretical studies were obtained for the first time. A fine-grained scan of the plane-wave incident angle a reveals the existence of discrete scattering resonances. The diameter and real part of the index of refraction determine the resonant conditions and the imaginary part of the refractive index has a threshold value to make mode up for its radiation loss. The cross coupling between transverse electric (TE) and transverse magnetic (TM) modes is clearly detected for both active and passive scattering as theoretically expected. (omitted)

  • PDF

Luminescence Characteristic of CNT Element in ZnS:(Cu, Al) Thin Film Fabricated by a Screen Printing Method (스크린 프린팅 방법으로 제작한 ZnS:(Cu, AL) 박막의 CNT 불순물 첨가에 의한 광학적 특성에 관한 연구)

  • Shon, Pong-Kyun;Shin, Jun-Ha;Bea, Jae-Min;Lee, Jae-Bum;Kim, Jong-Su;Lee, Sang-Nam
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.1
    • /
    • pp.23-33
    • /
    • 2011
  • This experimental focus to characterize luminescence properties related to CNT (Carbon Nano Tube) element dispersedly implanted in ZnS-based phosphor thin film panel fabricated by a screen printing method. More specifically FE-SEM measurements, L-V(Luminescence vs. Voltage) and photo luminescence were carried out to determine an optimum value of CNT concentration and film thickness for the thin film structure of CNT-ZnS:(Cu, Al) by the screen printing method. We confirmed that an optimum value of CNT concentration in the ZnS:(Cu, Al) film panel is about 0.75 wt% resulting that the electric conductivity is 1.6 times higher than that of pure CNT sample and showing that the luminescence intensity is increasing until the optimum concentration. Clearly, CNT is presenting in the luminescence process providing a pathway for the creation of hot electron and a channel for the electron-hole recombination but overly inserted CNT may hinder to produce the hot electron for making an avalanching process. In case of the overly doped CNT 1.0 wt% in the ZnS-based phosphor, the luminescence intensity is decreasing although the electric conductivity is exponentially increasing. Based on these results, we realized that hot electron occurred by the external electric field or exciton arose by the external photon source are reduced dramatically over the critical value of CNT concentration because CNT element provide various isolated residues in the composites of ZnS based phosphor rather than pathway or channel for the D-A(Donnor to Acceptor) pair transition or the radiative recombination of electron-hole.