• Title/Summary/Keyword: Radiative Transfer Model

Search Result 316, Processing Time 0.02 seconds

Effect of Vegetation Layers on Soil Moisture Measurement Using Radars (레이다를 이용한 토양 수분함유량 측정에서 초목 층의 영향 분석)

  • Park, Sinmyong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.660-663
    • /
    • 2016
  • This paper presents the effect of vegetation layer and radar parameters on soil moisture measurement using the vegetation layer scattering model and surface scattering model. The database of backscattering coefficients for various vegetation layer densities, incidence angles, frequencies, and polarizations is generated using $1^{st}$-order RTM(Radiative Transfer Model). Then, surface soil moisture contents were estimated from the backscattering coefficients in the database using the WCM(Water Cloud Model) and Oh model. The retrieved soil moisture contents were compared with the soil moisture contents in the input parameters of the RTM to estimate the retrieval errors. The effects of vegetation layer and radar parameters on soil moisture measurement are analyzed using the retrieval errors.

2D Heat Transfer Model for the Prediction of Temperature of Slab in a Direct-Fired Reheating Furnace (가열로 내 슬랩의 온도 예측을 위한 2차원 열전달 모델)

  • Lee Dong-Eun;Park Hae-Doo;Kim Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.950-956
    • /
    • 2006
  • A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace and transient conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The slab is moved with constant speed through non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux which is calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is applied as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.

Development of a Scattering Model for Soybean Fields and Verification with Scatterometer and SAR Data at X-Band

  • Kweon, Soon-Koo;Hwang, Ji-Hwan;Oh, Yi-Sok
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2012
  • This paper presents a scattering model and measurements of backscattering coefficients for soybean fields. The polarimetric radar backscatters of a soybean field were measured using the ground-based X-band polarimetric scatterometer in an angular range from $20^{\circ}$ to $60^{\circ}$. The backscattering coefficients were also obtained using the COSMO-SkyMed (Spotlight mode, HH-polarization) from July to October 2010. The backscattering coefficients of the soybean field were computed using the 1st-order radiative transfer model (RTM) with field-measured input parameters. The soybean layer is composed of the stems, branches, leaves, and soybean pods. The stems, branches, and pods are modeled with lossy dielectric cylinders, the leaves are modeled with lossy dielectric disks. The estimated backscattering coefficients agree quite well with the field-measured radar backscattering coefficients.

Dust Envelopes around Massive Young Stellar Objects

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.329-334
    • /
    • 2008
  • We investigate the spectral energy distributions (SEDs) of Massive Young Stellar Objects (MYSOs) using the various infrared observational data including the Infrared Space Observatory (ISO) data. We model the dust envelopes around the stars using a radiative transfer model for spherically symmetric geometry. Comparing the model results with the observed SEDs of the two MYSOs (AFGL 4176 and AFGL 2591), we derive the relevant dust shell parameters including the dust opacity, the dust density distribution, and dust temperature distribution. We find that the spherical model can produce the SEDs roughly similar to the observations. We expect that the results would be helpful for making more realistic non-spherical dust envelope models for MYSOs.

Radiative Role of Clouds on the Earth Surface Energy Balance (지표 에너지 수지에 미치는 구름의 복사 역할)

  • Hong, Sung-Chul;Chung, Ii-Ung;Kim, Hyung-Jin;Lee, Jae-Bum;Oh, Sung-Nam
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

Heat Transfer in Radiatively Participating Gas-Particle Cavity Flows (輻射가 關與하는 氣體-固體粒子 캐비티 流動에서의 熱傳達)

  • 이종욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.551-560
    • /
    • 1988
  • Gas-particle two phase flow and heat transfer in a cavity receiving thermal radiation through selectively transparent walls have been analyzed by a finite difference method. Particles injected from the upper hole of the cavity are accelerated downward by gravity and exit through the lower hole while they absorb, emit and scatter the incident thermal radiation. Gas phase is heated through convection heat transfer from particles, and consequently buoyancy induced flow field is formed. Two-equation model with two-way coupling is adopted and interaction terms are treated as sources by PSI-Cell method. For the particulate phase, Lagrangian method is employed to describe velocities and temperatures of particles. As thermal radiation is incident upon horizontally, radiative heat transfer in the vertical direction is assumed negligible and two-flux model is used for the solution of radiative heat flus. Gas phase velocity and temperature distributions, and particle trajectories, velocities and temperatures are presented. The effects of particle inlet condition, particle size, injection velocity and particle mass rate are mainly investigated.

Augmentation of Radiative Heat Transfer in an Infinite Cylindrical Pipe Enclosing a Participating Gas (참여기체를 가진 무한 원형관 계의 복사 열전달 증진)

  • 변기홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1955-1962
    • /
    • 1992
  • The purpose of this study is to identify the radiative heat transfer augmentation by a coaxial cylinder introduced in the infinite cylindrical pipe enclosing a participating gas. The gas is either a mixture of water vapor and carbon dioxide or gray. The gas is assumed to be homogeneous at a constant temperature, and has a refractive index of unity. All of the surfaces are opaque and gray, diffusely emitting and reflecting at a constant temperature, The effect of system diameter, diameter ratio, wall emittances, gas and surface temperatures, mixture component on heat transfer augmentation are studied by using the zone method with participating gas radiative properties evaluated from the weighted sum of gray gases model. From the radiative equilibrium condition, the installed wall temperature is formulated and calculated by the iteration method. If the medium is a gray gas, the augmentation observed are negligible. For the range of values studied for a real gas, if the system diameter is larger than about 0.1m the augmentation parameter increases up to about 1.2 as the system diameter increases. The augmentation parameter have a maximum value at a certain diameter ratio. The augmentation parameters decreases as the emittance of the installed wall decreases. If the gas temperature is higher than about 1273 k, the augmentation parameter decreases as the gas temperature increases.

Analysis of Radiative Heat Transfer and Thermal Stress in Flaring System of FPSO (FPSO 소각탑의 복사열전달 및 열응력 해석에 관한 연구)

  • Jang-Hyun Lee;Jong-Gye Shin;In-Sik Nho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.61-72
    • /
    • 2002
  • The flaring system of FPSO burns out the byproduct natural gas. The thermal loading due to radiative heat of flaring gas leads to undesirable thermal-stresses on itself. Nowadays it needs to understand the amount of thermal loading of flaring system since the requirement for the safety of the flaring system. However, few studies have been performed on the thermal environment and radiative heat flux on the FPSO flaring system. Present study suggests a procedure to model the thermal environment and a FEA process to analyze the temperature distribution and thermal stresses of FPSO flaring system. In order to get the temperature distribution, the radiative heat conditions and convective heat conditions are included in the heat transfer analysis. By making the use of temperature obtained through heat transfer analysis, the thermal stress analyses are performed. The results of the present study can be used to design the flaring system and determine the heat shield in the flaring system.

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.51-62
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.93-104
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF