DOI QR코드

DOI QR Code

Radiative Role of Clouds on the Earth Surface Energy Balance

지표 에너지 수지에 미치는 구름의 복사 역할

  • Hong, Sung-Chul (Department of Atmospheric and Environmental Sciences, Kangnung National University) ;
  • Chung, Ii-Ung (Department of Atmospheric and Environmental Sciences, Kangnung National University) ;
  • Kim, Hyung-Jin (International Pacific Research Center(IPRC)/University of Hawaii) ;
  • Lee, Jae-Bum (Global Environment Research Center, National Institute Environment Research) ;
  • Oh, Sung-Nam (Remote Sensing Research Laboratory, Meteorological Research Institute)
  • Published : 2007.03.28

Abstract

In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

Keywords

References

  1. Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad E., Hartmann, D., 1989, Cloud- radiative forcing and climate: Result from the Earth Radiation Budget Experiment, Sci., 243, 57-63 https://doi.org/10.1126/science.243.4887.57
  2. Cess, R.D., Zhang, M. H., Ingram, W. J., Potter, G. L., Alekseev, V., Barker, H. W., Cohen-Solal, E., Colman, R. A., Dazlich, D. A., Del Genio, A. D., Dix, M. R., Dyrnnilov, V., Esch, M., Fowler, L. D., Fraser, J. R., Galin, V., Gates, W. L. Hack, J. J., Kiehl, J. T., Treunt, H. Le., Lo, K. K. -W., McAvaney, B. J., Meleshko, V. P., Morcrette, J. - J., Randall, D. A., Roeckner, E., Royer, J.-F., Schlesinger, M. E., Sporyshev, P. V., Timbal, B., Volodin, E. M., Taylor, K. E., Wang, W., Wetherald, R. T., 1996, Cloud feedback in atmospheric general circulation model: An update, J. Geophys. Res., 101, 12791-12794 https://doi.org/10.1029/96JD00822
  3. Manabe, S., Strickler, R. F., 1964, Thermal equilibrium of the atmosphere with a convective adjustment, J. Atmos. Sci., 21, 361-385 https://doi.org/10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2
  4. Harrison, E. F., Minnis, P., Barkstrorn, B. R., Ramanathan, V., Cess, R. D., Gibson, G. G., 1990, Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment, J. Grophys. Res.,95, 18687-18703 https://doi.org/10.1029/JD095iD11p18687
  5. Cess, R.D., Zhang, M. H., Minnis, P., Corsetti, L., Dutton, E. G., Forgan, B. W., Garber, D. P., Gates, W. L., Hack, J. J., Harrison, E. F., Jing, X., Kiehl, J. T., Long, C. N., Morcrette, J.-J., Potter, G. L., Ramanathan, V., Subasilar, B., Whitlock, C. H., Young, D. F., Zhou, Y., 1995, Absorption of solar radiation by clouds: observations versus models, Sci., 267, 496-499 https://doi.org/10.1126/science.267.5197.496
  6. Collins, W. D., Valero, F. P. J., Flatau, P. J., Lubin, D., Grassl, H., Pilewskie, P., 1996, Radiative effects of convection in the tropical Pacific, J. Geophys. Res., 101, 14999-15012 https://doi.org/10.1029/95JD02534
  7. Wilson, M. F., 1984, The construction and use of land surface information in a general circulation climate model, Ph.D. Thesis, University of Liverpool, United Kingdom
  8. Chou, M. D., Zhao, W., Chou, S. H., 1998, Radiation budgets and cloud radiative forcing in the pacific warm pool during TOGA COARE, J. Geophys. Res., 103, 16967-16977 https://doi.org/10.1029/98JD01453
  9. Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Le Treut, H., Li, Z.-X., Liang, X.-Z., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai, I., 1989, Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation model, Sci., 245, 513-516 https://doi.org/10.1126/science.245.4917.513
  10. Kiehl, J. T., Trenberth, K. E., 1997, Earth's annual mean energy budget, Bull. Amer. Meteor. Soc., 78, 97-208
  11. 정일웅, 1999, 대순환 모형에서 일어나는 운동 에너지의 소산과 마찰 가열, 박사학위논문, 대기과학과, 연세대학, 서울
  12. Hansen, J., Lacis, A., Rand, D., Russel, G., Stone, P., Fung, I., Ruedi R., Lerner, J., 1983, Climate sensitivity: Analysis of feedback mechanisms in climate processes and climate sensi tivity, Geophys. Mono., 29, 130-163
  13. 유수현, 이은정, 전종갑, 류상범, 2001, 지구온난화에 따른 여름철 열대-동아시아 기후변동 상호작용 연구, 한국기상학회 초록집, 11(3), 397-400
  14. Maloney, E. D., Kiehl, J. T., 2002, Intraseasonal eastern Pacific precipitation and SST variations in a GCM coupled to a slab ocean model, J. Climate, 15, 2989-3007 https://doi.org/10.1175/1520-0442(2002)015<2989:IEPPAS>2.0.CO;2
  15. Levitus, S., 1982, Climatological Atlas of the World Ocean, NOAA Professional Paper 13