• Title/Summary/Keyword: Radiation transport

Search Result 399, Processing Time 0.027 seconds

The methods of CADIS-NEE and CADIS-DXTRAN in NECP-MCX and their applications

  • Qingming He;Zhanpeng Huang;Liangzhi Cao;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2748-2755
    • /
    • 2024
  • This paper presents two new methods for variance reduction for shielding calculation in Monte Carlo radiation transport. One method is CADIS-NEE, which combines Consistent Adjoint Driven Importance Sampling (CADIS) and next-event estimator (NEE) methods to increase the calculation efficiency of tallies at points. The other is CADIS-deterministic transport (DXTRAN), which combines CADIS and DXTRAN to obtain higher performance than using CADIS and DXTRAN separately. The combination processes are derived and implemented in the hybrid Monte-Carlo-Deterministic particle-transport code NECP-MCX. Various problems are tested to demonstrate the effectiveness of the two methods. According to the results, the two combination methods have higher efficiency than using CADIS, NEE or DXTRAN separately. In a long-distance photon-transport problem, CADIS-NEE converges faster than NEE and the figure of merit (FOM) of CADIS-NEE is 75.6 times of NEE. In a labyrinthine problem, CADIS-DXTRAN's FOM surpasses that of DXTRAN and CADIS by a factor of 45.3 and 17.7, respectively. Therefore, it is advisable to employ these two novel methods selectively in appropriate scenarios to reduce variance.

Evaluation of the KN-12 Spent Fuel Transport Cask by Analysis

  • Chung, Sung-Hwan;Lee, Heung-Young;Song, Myung-Jae;Rudolf Diersch;Reiner Laug
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.187-201
    • /
    • 2002
  • The KN-12 cask is designed to transport 12 PWR spent nuclear fuels and to comply with the requirements of Korea Atomic Energy Act, IAEA Safety Standards Series No.57-1 and US 10 CFR Part 71 for a Type B(U)F package. It provides containment, radiation shielding, structural integrity, criticality control and heat removal for normal transport and hypothetical accident conditions. W.H 14$\times$14, 16$\times$16 and 17$\times$17 fuel assemblies with maximum allowable initial enrichment of 5.0 wt.%, maximum average burn-up of 50,000 MWD/MTU and minimum cooling time of 7 years being used in Korea will be loaded and subsequently transported under dry and wet conditions. A forged cylindrical cask body which constitutes the containment vessel is closed by a cask lid. Polyethylene rods for neutron shielding are arranged in two rows of longitudinal bore holes in the cask body wall. A fuel basket to accommodate up to 12 PWR fuel assemblies provides support of the fuels, control of criticality and a path to dissipate heat. Impact limiters to absorb the impact energy under the hypothetical accident conditions are attacked at the top and at the bottom side of the cask during transport. Handling weight loaded with water is 74.8 tons and transport weight loaded with water with the impact limiters is 84.3 tons. The cask will be licensed in accordance with Korea Atomic Energy Act 3nd fabricated in Korea in accordance with ASME B&PV Code Section 111, Division 3.

Effect of Aerosol Feedback on Solar Radiation in the Korean Peninsula Using WRF-CMAQ Two-way Coupled Model (WRF-CMAQ 결합모델을 이용한 에어로졸 피드백 효과가 한반도 일사량에 미치는 영향 연구)

  • Yoo, Jung-Woo;Park, Soon-Young;Jeon, WonBae;Kim, Dong-Hyeok;Lee, HwaWoon;Lee, Soon-Hwan;Kim, Hyun-Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.435-444
    • /
    • 2017
  • In this study, we investigated the effect of aerosol feedback on $PM_{10}$ simulation using a two-way coupled air quality model (WRF-CMAQ). $PM_{10}$ concentration over Korea in January 2014 was simulated, and the aerosol feedback effect on the simulated solar radiation was intensively examined. Two $PM_{10}$ simulations were conducted using the WRF-CMAQ model with (FB) and without(NFB) the aerosol feedback option. We find that the simulated solar radiation in the west part of Korea decreased by up to $-80MJ/m^2$ due to the aerosol feedback effect. The feedback effect was significant in the west part of Korea, showing high $PM_{10}$ estimates due to dense emissions and its long-range transport from China. The aerosol feedback effect contributed to the decreased rRMSE(relative Root Mean Square Error) for solar radiation (47.58% to 30.75%). Aerosol feedback effect on the simulated solar radiation was mainly affected by concentration of $PM_{10}$. Moreover, FB better matched the observed solar radiation and $PM_{10}$ concentration than NFB, implying that taking into account the aerosol direct effects resulted in the improved modeling performance. These results indicate that aerosol feedback effects can play an important role in the simulation of solar radiation over Korean Peninsula.

Technical Review of the IAEA Regulations for Transportation of Radioactive Materials and Major Revision in the 1996 IAEA Safety Standard Series No. ST-l (IAEA 방사성물질 안전운송규정에 대한 요약과 1996년도판 개정의 요점)

  • Yoon, Jeong-Hyoun;Kim, Chang-Lak;Cho, Gyu-Seong;Choi, Heui-Joo;Park, Joo-Wan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.197-210
    • /
    • 1998
  • Regulations for the safe transport of radioactive material published by IAEA Safety Standard Series ST-l is reviewed and summarized. Safety Series No.115(International standard of radiation protection and safety for ionizing radiation and radiation sources), which reflected the new recommendation of ICRP60 published in 1991, has been a important encouragement for IAEA to revise their safety series related to the transportation of radioactive materials. IAEA Safety, Standard Series No. ST-l is summarized by comparing IAEA Safety Series No.6 regarding radiation protection system and its implementation, technical standards of packages, concept of Q system and exemption of regulation. The IAEA regulations of transportation of radioactive materials is summarized from the viewpoint of radiation protection and safety assessment. Research on transportation system of radioactive waste is suggested as a further study.

  • PDF

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

Assessment of Temporal Trend of Radiation Dose to the Public Living in the Large Area Contaminated with Radioactive Materials after a Nuclear Power Plant Accident (원전사고 후 광역의 방사성 오염부지 내 거주민에 대한 시간에 따른 피폭방사선량 평가)

  • Go, A Ra;Kim, Min Jun;Cho, Nam Chan;Seol, Jeung Gun;Kim, Kwang Pyo
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were $4.3{\sim}96kBq\;m^{-2}$ for $^{134}Cs$, $1.4{\sim}300kBq\;m^{-2}$ for $^{137}Cs$, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging $0.11{\sim}2.4mSv\;y^{-1}$ at Kawauchi area and $0.69{\sim}1.1mSv\;y^{-1}$ at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses. The estimated doses well agreed with the measurement data. This study results can be applied to radiation dose assessments at the contaminated area for radiation safety assurance or emergency preparedness.

Columnar Aerosol Properties at Yongin According to Transport Paths of Back Trajectories (역궤적 이동경로별 용인지역의 컬럼에어로졸 특성)

  • Park, Jisoo;Choi, Yongjoo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • Columnar aerosol properties retrieved from solar radiation were investigated at the Yongin (YGN) SKYNET site over seven years from October 2008 to October 2015. Hourly averages were calculated when the data were available, and back trajectories were calculated to examine the effects of regional transport. Data recovery rate was low at 6.6%, primarily because solar radiation was measured only under daytime clear-sky conditions. Mean values of the fine-mode volume fraction (FMVF) as well as its seasonal variation were similar to those of $PM_{2.5}/PM_{10}$ although the coarse-mode fraction of column aerosols tended to be slightly larger. The values of single scattering albedo (SSA) and FMVF were lower in spring due to the effects of mineral dust, and higher in summer due to secondarily-formed inorganic ions. Back trajectories were grouped into five clusters according to the directions of transport paths. Aerosol loading was highest for Cluster 2 from the northwest, but SSA and FMVF were not particularly high or low because aerosols were composed of various materials with different properties. Aerosol loading was lowest for Cluster 5 from the Pacific Ocean passing through the south end of Japan, whose SSA and FMVF were highest as secondarily-formed inorganic ions were mixed.

Monte Carlo Calculation for Production Cross-Sections of Projectile's Isotopes from Therapeutic Carbon and Helium Ion Beams in Different Materials

  • Quazi Muhammad Rashed Nizam;Asif Ahmed;Iftekhar Ahmed
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.204-212
    • /
    • 2023
  • Background: Isotopes of the projectile may be produced along the beam path during the irradiation of a target by a heavy ion due to inelastic interactions with the media. This study analyzed the production cross-section of carbon (C) and Helium (He) projectile's isotopes resulting from the interactions of these beams with different materials along the beam path. Materials and Methods: In this study, we transport C and He ion beams through different materials. This transportation was made by the Monte Carlo simulation. Particle and Heavy Ion Transport code System (PHITS) has been used for this calculation. Results and Discussion: It has been found that 10C, 11C, and 13C from the 12C ion beam and 3He from the 4He ion beam are significant projectile's isotopes that have higher flux than other isotopes of these projectiles. The 4He ion beam has a higher projectile's isotope production cross-section along the beam path, which adds more impurities to the beam than the 12C ion beam. These projectile's isotopes from both the 12C and 4He ion beams have higher production cross-sections in hydrogenous materials like water or polyethylene. Conclusion: It is important to distinguish these projectile's isotopes from the primary beam particles to obtain a precise and accurate cross-section result by minimizing the error during measurement with a nuclear track detector. This study will show the trend of the production probability of projectile's isotopes for these ion beams.

Research on Antennas Placement of Line-of-sight Datalink for Transport Drone (수송드론 가시선 데이터링크 안테나 배치 방안 연구)

  • Sung-Ho Lim;Kilyoung Seong;Jae-Kyung Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.63-75
    • /
    • 2023
  • The antenna radiation pattern was simulated by arranging the mounted antennae of the transport drone in 5 locations where radio interference was expected to be low, and they could be mounted. Depending on the mounting location, the probability that the link margin was less than 0 dB was (5.41 - 26.92) %. When two antennae were mounted and one was selected, the probability was (0.11 - 3.3) %. Among the arrangements, placing one antenna in the upper part of the front and one in the lower part of the rear showed the lowest link fail probability. In this case, it was analyzed that if the attitude roll and pitch of the aircraft were limited, link fail would not occur at an operating distance of 12 km or less. An antenna selection formula for this case was derived, and a method of reducing frequent alternation of antennae was applied to maintain a stable link.

Construction of MIRD-type Korean Adult Male Phantom and Calculation of Dose Conversion Coefficients for Photon (한국 성인남성 MIRD형 모의피폭체 제작 및 광자 외부피폭 선량환산인자 산출)

  • Park, Sang-Hyun;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • MIRD-type Korean adult male phantom, 'KMIRD' was constructed to calculate Korean-specific dosimetric quantities for radiation protection consideration. The external shape of KMIRD was based on national physical standard data of Korean. KMIRD has thicket trunk than MIRD5 and arm models divided from trunk. The height and weight of the KMIRD are 171 cm and 63.8 kg. ICRP23 data were referred to constitute organs and tissues of KMIRD. However nine organs were constructed based on Korean reference data provided by Radiation Health Research Institute. In the present study, the MCNPX2.3 Monte Carlo transport code was combined with KMIRD to calculate dose conversion coefficients for photon in the energy range from 0.05 to 10 MeV. The simulated irradiation geometries are broad parallel photon beams in AP, PA, LLAT and RLAT direction. Absorbed dose conversion coefficients were compared with data calculated with MIRD5, MIRD-type phantom based on ICRP23 reference man. In some organs, the discrepancies between two phantoms amount up to nearly 30%. The effective doses conversion coefficients of KMIRD are lower than those of MIRD5. The dose discrepancies between two MIRD-type phantoms ate because of physical differences between Korean and Western, also geometric differences between two phantoms. KMIRD should be revised using the full set of Korean reference data of all organs. The developed MIRD-type Korean adult male phantom can be applied to dose assessment of internal exposure.