DOI QR코드

DOI QR Code

The methods of CADIS-NEE and CADIS-DXTRAN in NECP-MCX and their applications

  • Qingming He (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zhanpeng Huang (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Liangzhi Cao (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Hongchun Wu (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2023.11.08
  • Accepted : 2024.02.18
  • Published : 2024.07.25

Abstract

This paper presents two new methods for variance reduction for shielding calculation in Monte Carlo radiation transport. One method is CADIS-NEE, which combines Consistent Adjoint Driven Importance Sampling (CADIS) and next-event estimator (NEE) methods to increase the calculation efficiency of tallies at points. The other is CADIS-deterministic transport (DXTRAN), which combines CADIS and DXTRAN to obtain higher performance than using CADIS and DXTRAN separately. The combination processes are derived and implemented in the hybrid Monte-Carlo-Deterministic particle-transport code NECP-MCX. Various problems are tested to demonstrate the effectiveness of the two methods. According to the results, the two combination methods have higher efficiency than using CADIS, NEE or DXTRAN separately. In a long-distance photon-transport problem, CADIS-NEE converges faster than NEE and the figure of merit (FOM) of CADIS-NEE is 75.6 times of NEE. In a labyrinthine problem, CADIS-DXTRAN's FOM surpasses that of DXTRAN and CADIS by a factor of 45.3 and 17.7, respectively. Therefore, it is advisable to employ these two novel methods selectively in appropriate scenarios to reduce variance.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. U2067209), the Young Elite Scientists Sponsorship Program by CAST (2019QNRC001) and the Innovative Scientific Program of CNNC.

References

  1. A. Alizadeh, A.S. Shirani, S. Kashi, Neutron and gamma-ray deep penetration calculation through biological concrete shield of VVER-1000 reactor by a new technique based on variance reduction, Ann. Nucl. Energy 60 (2013) 86-92, https://doi.org/10.1016/j.anucene.2013.04.033.
  2. M. Munk, R.N. Slaybaugh, Review of hybrid methods for deep-penetration neutron transport, Nucl. Sci. Eng. 193 (2019) 1055-1089, https://doi.org/10.1080/00295639.2019.1586273.
  3. J.C. Wagner, A. Haghighat, Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function, Nucl. Sci. Eng. 128 (1998) 186-208, https://doi.org/10.13182/NSE98-2.
  4. J.C. Wagner, D.E. Peplow, S. W Mosher, FW-CADIS method for global and regional variance reduction of Monte Carlo radiation transport calculations, Nucl. Sci. Eng. 176 (2014) 37-57, https://doi.org/10.13182/NSE12-33.
  5. S.W. Mosher, A.M. Bevil, S.R. Johnson, et al., ADVANTG an Automated Variance Reduction Parameter Generator, Oak Ridge National Lab., 2013. ORNL/TM-2013/416.
  6. L. Deng, G. Li, B.Y. Zhang, et al., A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0, Nucl. Sci. Tech. 33 (2022) 108, https://doi.org/10.1007/s41365-022-01092-0.
  7. Q.M. He, Q. Zheng, J. Li, et al., NECP-MCX: a hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems, Ann. Nucl. Energy 151 (2021) 207978, https://doi.org/10.1016/j.anucene.2020.107978.
  8. Q. Zheng, W. Shen, Q.M. He, et al., High-efficiency simulation of VENUS-3 neutron-shielding problem with an automatic and enhanced hybrid Monte-Carlo-Deterministic method, Ann. Nucl. Energy 153 (2021) 108039, https://doi.org/10.1016/j.anucene.2020.108039.
  9. S.W. Mosher, A.M. Bevill, Estimating consistent biased source probabilities over arbitrary bins, in: 20th Topical Meeting of the Radiation Protection & Shielding Division of ANS, 2018, pp. 26-31. Santa Fe, NM, August.
  10. Y. H Zuo, S.Y. Niu, P. Shang, et al., Weight window variance reduction method for simulating long distance γ-ray transport, Mod. Appl. Phys. 11 (2019) 10205, https://doi.org/10.12061/j.issn.2095-6223.2020.010205.
  11. M.H. Kalos, On the estimation of flux at a point by Monte Carlo, Nucl. Sci. Eng. 16 (1963) 111-117, https://doi.org/10.13182/NSE63-A26481.
  12. F.B. Brown, MCNP - A General Monte Carlo Code N-Particle Transport]code, Version 5, Los Alamos Natl. Lab., 2003. LA-UR-03-1987. 
  13. J.A. Kulesza, C.J. Solomon, B.C. Kiedrowski, An angular biasing method using arbitrary convex polyhedra for Monte Carlo radiation transport calculations, Ann. Nucl. Energy 114 (2018) 437-450, https://doi.org/10.1016/j.anucene.2017.12.045.
  14. E.D. Cashwell, R.G. Schrandt, Flux at a point in MCNP, in: Seminar on Theory and Applications of Monte Carlo Methods, April 1980. Oak Ridge, TN, USA.
  15. H.J. Kalli, E.D. Cashwell, Evaluation of Three Monte Carlo Estimation Schemes for Flux at a Point, Los Alamos Natl. Lab., 1977, pp. 1-24. LA-6865-MSTRN: 78-000747.
  16. C.Y. Li, J.L. Li, J.P. Cheng, et al., Research of point flux estimation method, Nucl. Sci. Eng. 159 (2008) 284-295, https://doi.org/10.13182/NSE159-284.
  17. X. Wang, J.L. Li, R. Qiu, et al., A high efficiency transport method for Monte Carlo calculation of maze and duct shielding, in: 8th International Symposium on Radiation Safety and Detection Technology, Jeju-si, Korea, July.