DOI QR코드

DOI QR Code

Performance of different absorber materials and move-in/out strategies for the control rod in small rod-controlled pressurized water reactor: A study based on KLT-40 model

  • Zhiqiang Wu (School of Nuclear Science and Technology, University of South China) ;
  • Jinsen Xie (School of Nuclear Science and Technology, University of South China) ;
  • Pengyu Chen (School of Nuclear Science and Technology, University of South China) ;
  • Yingjie Xiao (School of Nuclear Science and Technology, University of South China) ;
  • Zining Ni (School of Nuclear Science and Technology, University of South China) ;
  • Tao Liu (School of Nuclear Science and Technology, University of South China) ;
  • Nianbiao Deng (School of Nuclear Science and Technology, University of South China) ;
  • Aikou Sun (School of Nuclear Science and Technology, University of South China) ;
  • Tao Yu (School of Nuclear Science and Technology, University of South China)
  • Received : 2023.12.01
  • Accepted : 2024.02.18
  • Published : 2024.07.25

Abstract

Small rod-controlled pressurized water reactors (PWR) are the ideal energy source for vessel propulsion, benefiting from their high reactivity control efficiency. Since the control rods (CRs) increase the complexity of reactivity control, this paper seeks to study the performance of CRs in small rod-controlled PWRs to extend the lifetime and reduce power offset due to CRs. This study investigates CR grouping, move-in/out strategies, and axially non-uniform design effects on core neutron physics metrics. These metrics include axial offset (AO), core lifetime (CL), fuel utilization (FU), and radial power peaking factor (R-PPF). To simulate the movement of the CRs, a "Critical-CR-burnup" function was developed in OpenMC. In CR designs, the CRs are grouped into three banks to study the simultaneous and prioritized move-in/out strategies. The results show CL extension from 590 effective full power days (EFPDs) to 638-698 EFPDs. A lower-worth prioritized strategy minimizes AO and the extremum values decrease from -0.69 and + 0.81 to -0.28 and + 0.51. Although an axially non-uniform CR design can improve AO at the beginning of cycle (BOC), considering the overall CR worth change is crucial, as a significant decrease can adversely impact axial power distribution during the middle of cycle (MOC).

Keywords

Acknowledgement

This work is supported by the Graduate Research Innovation Project of Hunan Province (No. CX20230963) and the National Natural Science Foundation of China (No. U2267207).

References

  1. G. Locatelli, C. Bingham, M. Mancini, Small modular reactors: a comprehensive overview of their economics and strategic aspects, Prog. Nucl. Energy 73 (2014) 75-85, https://doi.org/10.1016/j.pnucene.2014.01.010.
  2. A. Halimi, K. Shirvan, Impact of core power density on economics of a small integral PWR, Nucl. Eng. Des. 385 (2021) 111488, https://doi.org/10.1016/j.nucengdes.2021.111488.
  3. J.H. Kim, M.M. Song, S.A. Alameri, Emerging areas of nuclear power applications, Nucl. Eng. Des. 354 (2019) 110183, https://doi.org/10.1016/j.nucengdes.2019.110183.
  4. M.D. Carelli, P. Garrone, G. Locatelli, M. Mancini, C. Mycoff, P. Trucco, M. E. Ricotti, Economic features of integral, modular, small-to-medium size reactors, Prog. Nucl. Energy 52 (4) (2010) 403-414, https://doi.org/10.1016/j.pnucene.2009.09.003.
  5. O. Bukharin, Russia's nuclear icebreaker fleet, Sci. Global Secur. 14 (1) (2006) 25-31, https://doi.org/10.1080/08929880600620559.
  6. M.K. Rowinski, T.J. White, J.Y. Zhao, Small and Medium sized Reactors (SMR): a review of technology, Renewable Sustainable Energy Rev. 44 (2015) 643-656, https://doi.org/10.1016/j.rser.2015.01.006.
  7. V.V. Petrunin, Yu P. Fadeev, A.N. Pakhomov, K.B. Veshnyakov, V.I. Polunichev, I. E. Shamanin, Conceptual design of small NPP with RITM-200 reactor, At. Energy 125 (2019) 365-369, https://doi.org/10.1007/s10512-019-00495-4.
  8. M.V. Ramana, L.B. Hopkins, A. Glaser, Licensing small modular reactors, Energy 61 (2013) 555-564, https://doi.org/10.1016/j.energy.2013.09.010.
  9. U. Rohde, I. Elkin b, V. Kalinenko, Analysis of a boron dilution accident for WWER-440 combining the use of the codes DYN3D and SiTap, Nucl. Eng. Des. 170 (1-3) (1997) 95-99, https://doi.org/10.1016/S0029-5493(97)00016-2.
  10. B.H. Jo, C.J. Hah, Investigation on long-term daily load follow operation capability of soluble boron-free SMR, Ann. Nucl. Energy 149 (2020) 107764, https://doi.org/10.1016/j.anucene.2020.107764.
  11. Y. Alzaben, V.H. Sanchez-Espinoza, R. Stieglitz, Core neutronics and safety characteristics of a boron-free core for Small Modular Reactors, Ann. Nucl. Energy 132 (2019) 70-81, https://doi.org/10.1016/j.anucene.2019.04.017.
  12. L.V.D. Merwe, C.J. Hah, Reactivity balance for a soluble boron-free small modular reactor, Nucl. Eng. Technol. 50 (5) (2018) 648-653, https://doi.org/10.1016/j.net.2018.01.019.
  13. Chungchan Lee, Dae-Hyun Hwang, Sung-Quun Zee, Moon Hee Chang, Nuclear and thermal hydraulic design characteristics of the SMART core, in: International Conference on Global Environment and Advanced Nuclear Power Plants, 2003. Kyoto, Japan, https://www.osti.gov/etdeweb/biblio/20635506.
  14. J. Choe, Y. Zheng, D. Lee, H.C. Shin, Boron-free small modular pressurized water reactor design with new burnable absorber, Int. J. Energy Res. 40 (15) (2016) 2128-2135, https://doi.org/10.1002/er.3590.
  15. D.T. Ingersoll, M.D. Carelli, Handbook of small modular nuclear reactor, in: A. Worrall (Ed.), Core and Fuel Technologies in Integral Pressurized Water Reactors (iPWRs), 2021, pp. 69-93, https://doi.org/10.1016/B978-0-12-823916-2.09991-4. United Kingdom.
  16. J. Mart, A. Klein, A. Soldatov, Feasibility study of a soluble boron-free small modular integral pressurized water reactor, Nucl. Technol. 18 (1) (2014) 8-19, https://doi.org/10.13182/NT13-135.
  17. J. Jang, J. Choe, S. Choi, M. Lemaire, D. Lee, H.C. Shin, Conceptual design of long-cycle boron-free small modular pressurized water reactor with control rod operation, Int. J. Energy Res. 44 (8) (2020) 6463-6482, https://doi.org/10.1002/er.5381.
  18. S.B. Alam, D. Kumar, B. Almutairi, P.K. Bhowmik, C. Goodwin, G.T. Parks, Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part I: assembly-level analysis, Nucl. Eng. Des. 346 (2019) 157-175, https://doi.org/10.1016/j.nucengdes.2019.03.005.
  19. A.C. Diakov, A.M. Dmitriev, J. Kang, A.M. Shuvayev, F.N.V. Hippel, Feasibility of converting Russian icebreaker reactors from HEU to LEU fuel, Sci. Global Secur. 14 (1) (2006) 33-48, https://doi.org/10.1080/08929880600620575.
  20. Khalid Al-Nabhani, Applications of nuclear and radioisotope technology, in: IAEA (Ed.), Treaty on the Non-proliferation of Nuclear Weapons-NPT, United State, 2021, pp. 439-445, https://doi.org/10.1016/B978-0-12-821319-3.00082-8.
  21. K.K. Seog, Specification for the VERA Depletion Benchmark Suite, Oak Ridge National Lab, 2015, p. 7, https://doi.org/10.2172/1256820. ORNL/TM-2016/53NT0304000.
  22. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048.
  23. D.S. Li, Characteristic analyses of "177 core" of HPR1000, Nucl. Power Eng. 43 (3) (2022) 28-32, https://doi.org/10.13832/j.jnpe.2022.03.0028.
  24. V.D. Risovany, E.E. Varlashova, D.N. Suslov, Dysprosium titanate as an absorber material for control rods, J. Nucl. Mater. 281 (1) (2000) 84-89, https://doi.org/10.1016/S0022-3115(00)00129-X.
  25. M.M. Nasseri, Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry, Ann. Nucl. Energy 114 (2018) 603-606, https://doi.org/10.1016/j.anucene.2017.12.060.
  26. Y. Liu, M.C. Li, R.Y. Yu, P. Xiao, L. Lou, Burnup analysis of candidate materials for accident tolerant fuel control rod, Mod. Appl. Phys. 12 (1) (2021) 10211, https://doi.org/10.12061/j.issn.2095-6223.2021.01021. -10211.
  27. C. Liu, F.Y. Zhao, D. Liu, B. Yang, J.B. Li, X.L. Zhang, B. Ye, H.Y. Lv, Research on non-uniform control rod for PWR, Prog. Nucl. Energy 133 (2021) 103527, https://doi.org/10.1016/j.pnucene.2020.103527.