• Title/Summary/Keyword: Radiation technology information system

Search Result 195, Processing Time 0.026 seconds

Provision of a Draft Version for Standard Classification Structure for Information of Radiation Technologies through Analyzing Their Information and Derivation of Its Applicable Requirements to the Information System (방사선 기술정보 분석을 통한 정보표준분류체계(안) 마련 및 시스템 적용요건 도출)

  • Jang, Sol-Ah;Kim, Joo Yeon;Yoo, Ji Yup;Shin, Woo Ho;Park, Tai Jin;Song, Myung-jae
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • Radiation technology is the one for developing new products or processes by applying radiation or for creating new functions in industry, research and medical fields, and its application is increasing consistently. For securing an advanced technology competitiveness, it is required to create a new added value by information consumer through providing an efficient system for supporting information, which is the infrastructure for research and development, contributed to its collection, analysis and use with a rapidity and structure in addition to some direct research and development. Provision of the management structure for information resources is especially crucial for efficient operating the system for supporting information in radiation technology, and then a standard classification structure of information must be first developed as the system for supporting information will be constructed. The standard classification structure has been analyzed by reviewing the definition of information resources in radiation technology, and those classification structures in similar systems operated by institute in radiation and other scientific fields. And, a draft version of the standard classification structure has been then provided as 7 large, 25 medium and 71 small classifications, respectively. The standard classification structure in radiation technology will be developed in 2015 through reviewing this draft version and experts' opinion. Finally, developed classification structure will be applied to the system for supporting information by considering the plan for constructing this system and database, and requirements for designing the system. Furthermore, this structure will be designed in the system for searching information by working to the individual need of information consumers.

Development of Efficient System for Collection-Analysis-Application of Information Using System for Technology and Information in the Field of RI-Biomics (RI-Biomics 기술정보시스템을 활용한 효율적인 정보 수집-분석-활용 체계 수립에 관한 연구)

  • Jang, Sol-Ah;Kim, Joo Yeon;Park, Tai-Jin
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.161-166
    • /
    • 2015
  • RI-Biomics is the new radiation fusion technology of which, such as the characteristics of radioisotope, is applied to the biomics. In order to sharing and overall analysis of data between the institutions through total management of information in the field of RI-Biomics, RI-Biomics Information portal 'RIBio-Info' was constructed by KARA (Korean Association for Radiation Application) in February 2015. For systematic operation of this 'RIBio-Info' system, it is required to develop system of collection-analysis-application of information. So, in this paper, we summarized development of document forms at each processes of collection-analysis-application of information and systematization of collection methods of information, establishment of characteristically analysis methods of reports such as issue paper, policy report, global market report and watch report. Therefore, these are expected to improving the practical applicability in this field through the vitalization of technology development of users by achieving the circular structure of collectionanalysis-application of information.

Ubiquitous Radioactivity Care System (유비쿼터스 방사성 CARE 시스템에 관한 보고서)

  • Jung, Chang-Duk;Park, Chan-Hyuk;Hwang, Sun-Il
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.409-414
    • /
    • 2009
  • I have not seen each of the existing technology, RFID/USN technology combined with the wireless communication channel for the state of nuclear safety in real-time remote monitoring and operation system technology CARE existing radioactive accident information collected by the nuclear power and nuclear power status, 10-20 second intervals to monitor the safety network (SIDS), and nuclear power plants located on the site within 40 ㎞ radius around the 13~15 of the wind speed from the automatic weather network weather information such as rainfall and temperature every 10 minutes to collect as automatic weather network (REMDAS), Evaluation of atmospheric radiation and radiation of the bomb radiation impact assessment system to calculate the goodness (FADAS) and thicken the radiation-related information consists of real-time web technology to collect, the last robot on behalf of the human will to manage the nuclear power plant accident of the technology to prevent the concrete from the following narrative about to have.

  • PDF

Structure of an Oncology Information System Based on a Cost-Effective Relational Database for Small Departments of Radiation Oncology

  • Jeon, Hosang;Kim, Dong Woon;Joo, Ji Hyeon;Ki, Yongkan;Kim, Wontaek;Park, Dahl;Nam, Jiho;Kim, Dong Hyeon
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.172-178
    • /
    • 2020
  • Purpose: Radiation oncology information systems (ROIS) have evolved toward connecting and integrating information between radiation treatment procedures. ROIS can play an important role in utilizing modern radiotherapy techniques that have high complexity and require a large amount of information. Methods: Using AccessTM software, we have developed a relational database that is highly optimized for a radiotherapeutic workflow. Results: The prescription table was chosen as the core table to which the other tables were connected, and three types of forms-charts, worklists, and calendars- were suggested. A fast and reliable channel for delivering orders and remarks according to changes in the situation was also designed. Conclusions: We expect our ROIS design to inspire those who need to develop and manage an individual ROIS suitable for their radiation oncology departments at a low cost.

A Study on Radiation Risk Recognition Aided System Visualizing Risk Information by CG

  • Katagiri, M.;Tuzuki, Y.;Sawamura, S.;Aoki, Y.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.425-428
    • /
    • 2002
  • The technology of Computer Graphics (CG) has been in great progress for almost 20 years and has proven to be a valuable tool for a broad variety of fields, including nuclear engineering. To work in any hazardous environment for example radiation field is particularly challenging because the danger is not always visually apparent. In this study as the application of CG to nuclear engineering field, we proposed to develop a radiation risk recognition aided system in which various radiation information; radiation risks, radiation distribution, hazard information and so on, were visualized by CG. The system used the server and client system. In the server there were two parts; one (main-server) was the database part having various data and the other (sub-server) was the visualization part visualizing the human phantom by POV-Ray. In the client there was the input and output part. The outputs from the system were various radiation information represented by coloring, circle graph and line graph intuitionally. The system is useful for a broad range of activities including radiation protection, radiation management, dose minimization, and demonstration to the public.

  • PDF

Consideration of the Direction for Improving RI-Biomics Information System for Using Big Data in Radiation Field (방사선 빅데이터 활용을 위한 RI-Biomics 기술정보시스템 개선 방향성에 관한 고찰)

  • Lee, Seung Hyun;Kim, Joo Yeon;Lim, Young-Khi;Park, Tai-Jin
    • Journal of Radiation Industry
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • RI-Biomics is a fusion technology in radiation fields for evaluating in-vivo dynamics such as absorption, distribution, metabolism and excretion (RI-ADME) of new drugs and materials using radioisotopes and quantitative evaluation of their efficacy. RI-Biomics information is being provided by RIBio-Info developed as information system for distributing its information and three requirements for improving RIBio-Info system have been derived through reviewing recent big data trends in this study. Three requirements are defined as resource, technology and manpower, and some reviews for applying big data in RIBio-In system are suggested. Fist, applicable external big data have to be obtained, second, some infrastructures for realizing applying big data to be expanded, and finally, data scientists able to analyze large scale of information to be trained. Therefore, an original technology driven to analyze for atypical and large scale of data can be created and this stated technology can contribute to obtain a basis to create a new value in RI-Biomics field.

The Development of Web Program for Providing RI-Biomics Technical Information (RI-Biomics 기술정보 제공을 위한 웹 프로그램 개발 연구)

  • Kim, Na-Kyung;Kim, Joo Yeon;Jang, Sol-Ah;Park, Tai-Jin
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • For designing the model of the web program, the demand survey for the technology and information has been performed for the students of the related departments, industrialists and researchers. And, the survey, such as advantages and disadvantages, for the current situations has been examined through comparison and analysis by the establishment type and operational process for the present operating web programs having the similar functions in Korea. The contents and web program for the technology and information system have been also developed by the question investigation and the expert opinions. This system for RI-Biomics has been developed by focusing the convenience for the information provision and the information search as the first constructing direction. Information has been collected by the operator in our institute and making contract with Global Trend Briefing of KISTI in Korea. The information collection in the web program has been designed as the direction regularly provided with RSS. Information has been then analyzed by constructing the expert pool provided from the advisory committee for the technology and information, and using them. The publicity for this web program has been performed by webzines and then it is noted that the publicity programs such as some events should be regularly developed when expanded and advanced to a community in future.

Development of the Standard Classification System of Technical Information in the Field of RI-Biomics and Its Application to the Web System (RI-Biomics 분야 기술정보 표준분류체계 개발 및 적용)

  • Jang, Sol-Ah;Kim, Joo Yeon;Park, Tai-Jin
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.155-159
    • /
    • 2014
  • RI-Biomics is a new concept that combines radioisotopes (RI) and Biomics. For efficient collection of information, establishment of database for technical information system and its application to the system, there is an increasing need for constructing the standard classification system of technical information by its systematical classification. In this paper, we have summarized the development process of the standard classification system of technical information in the field of RI-Biomics and its application to the system. Constructing the draft version for the standard classification system of technical information was based on that standard classification one in national science and technology in Korea. The final classification system was then derived through the reconstruction and the feedback process based on the consultation from the 7 experts. These results were applied to the database of technical information system after transforming as standard code. Thus, the standard classification system were composed of 5 large classifications and 20 small classifications, and those classification are expected to establish the foundation of information system by achieving the circular structure of collection-analysis-application of information.

Remote Visualization of Radiation Information based on small Semiconductor Sensor Modules (소형 반도체 센서모듈 기반 방사선정보 원격 가시화기술 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Heu, Yong-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.876-879
    • /
    • 2012
  • In this paper we studied the radiation detection technology which described the radiation level distribution in high radiation area with remotely and safely. The designed radiation mapping system was composed of radiation nodes and radiation station. The radiation nodes could sense the radiation dose values with pMOSFET radiation sensors and transmit them to the radiation station. At the radiation station the received radiation values were merged with a geometric information and visualized at the virtual graphic location. For the functional verification of the above system, we attached the radiation nodes to each corner in our laboratory, executed the mapping tests, and confirmed the designed functions finally.

  • PDF

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.