• Title/Summary/Keyword: Radiation pattern measurement

Search Result 121, Processing Time 0.026 seconds

Bulk Shear-Wave Transduction Experiments Using Magnetostrictive Transducers with a Thin Fe-Co Alloy Patch (철-코발트 합금 패치로 구성된 자기변형 트랜스듀서를 이용한 체적 전단파 발생 및 측정)

  • Park, Jae-Ha;Cho, Seung-Hyun;Ahn, Bong-Young;Kwon, Hyu-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1075-1081
    • /
    • 2010
  • Recently, the results of many studies have clarified the successful performance of magnetostrictive transducers in which a ferromagnetic patch is used for the transduction of guided shear waves; this is because a thin ferromagnetic patch with strong magnetostriction is very useful for generating and detecting shear wave. This investigation deals with bulk shear wave transduction by means of magnetostriction; on the other hand, the existing studies have been focused on guided shear waves. A modular transducer was developed; this transducer comprised a coil, magnets, and a thin ferromagnetic patch that was made of Fe-Co alloy. Some experiments were conducted to verify the performance of the developed transducer. Radiation directivity pattern of the developed transducer was obtained, and a test to detect the damage on a side drill hole of a steel block specimen was carried out. From the results of these tests, the good performance of the transducer for nondestructive testing was verified on the basis of the signal-to-noise ratio and narrow beam directivity.

Analysis of Tapered Slot Antenna for UWB with Directivity Characteristic (지향성 특성을 갖는 UWB 용 테이퍼드 슬롯 안테나 분석)

  • Kim, Sun-Woong;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.691-697
    • /
    • 2016
  • In this paper, we propose the antenna to appropriate for a UWB communication system, and it meets characteristics for location recognition in predetermined range. Proposed tapered slot antenna was designed through the HFSS simulation tool of Ansys. Inc., it was produced by Taconic TRF-45 based on dielectric constant of 4.5, loss tangent 0.0035, thickness 1.62mm. The tapered slot antenna is analyzed the standing wave ratio and reflection coefficient, radiation pattern in the frequency domain. The impedance bandwidth range of the produced tapered slot antenna is from 3.8 ~ 8.9GHz to 5.1GHz, E-plane and H-plane radiation pattern meet directional antenna characteristics for indoor and outdoor location recognition in predetermined range. The antenna gain is 7.4 dBi(6GHz)in the simulation, the result of measurement demonstrated 7.4 dBi(6 GHz) of antenna maximum gain. Proposed tapered slot antenna meets UWB communication system but simulated and measured results were slightly different.

Design of a PCB-Embedded Antenna for Bluetooth Applications (블루투스용 PCB 임베디드 안테나 설계)

  • Kim, Yun-Mi;Park, Myoung-Shil;Chyung, Ji-Young;Jung, Hae-Mi;Ahn, Bierng-Cherl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.98-104
    • /
    • 2006
  • In this parer, proposed a Miniature inverted F Antenna for Bluetooth applications using folded structure and confirm it through producing and measurement. The proposed antenna as PIFA is optimized the impedance matching and the radiation pattern by positioning of feed line and short line. This antenna is designed with Microwave Studio presented CST and the optimized antenna structure is fabricated. The optimized miniature antenna size is 17.3 * 6 * 0.8 mm, the measured return loss bandwidth is 220MHz at 2.45GHz, the radiation pattern is quasi omni, and the gain is -1 dBi. these results are similar to the simulation data. It is comparatively appropriate for Bluetooth system.

  • PDF

Internal Antenna Design for GSM900/DCS1800/PCS1900 Using an Overlap of Return Loss (반사 손실 합성법을 이용한 GSM900/DCS1800/PCS1900 내장형 안테나 설계)

  • Jang, Byung-Chan;Kim, Che-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.503-510
    • /
    • 2007
  • This paper proposes the design scheme of internal triple band antenna intended for using in GSM900, DCS1800, and PCS1900 bands. The suggested folding metal plates of the two branches are mounted on a dielectric coated ground plane for size miniaturization and durability. Return losses are overlapped when length of metal branches are controlled. This is important technique for wide band operation. For the suggested antenna geometry its return loss was calculated by HFSS 9 simulator, and was shown to be -10 [dB] less within the required band. Also, gain and radiation pattern of antenna were measured using far field measurement system in an anechoic chamber. The measured peak gain is more than 3.0 [dBi], and the average gain is over -1.0 [dBi] for the triple band, which is regarded as satisfactory for the internal antenna application. Also, the radiation pattern for two frequencies shows a similar shape each other within the required band.

A CPW-fed Small Monopole Antenna for 5.1~5.8 GHz WLAN (5.1~5.8 GHz 무선랜용 CPW 급전 소형 모노폴 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1659-1665
    • /
    • 2019
  • In this paper, a novel design of a compact printed monopole antenna for wireless local area network (WLAN) applications is investigated. The radiator with a patch of different line width and step-shaped ground planes is used to reduce the antenna size. The size of the antenna is 16 × 17 × 1 ㎣ and is fabricated with a photolithography technique. The simulated and measured results agree well. The resonant frequency of the investigated antenna is about 5.2 GHz and can cover an impedance bandwidth of 1 GHz for the measurement result. In addition, we presented the measured radiation pattern, presented the gain and efficiency measured in the required WLAN 5 GHz frequency band (5.15-5.825 GHz), and confirmed that it can be used as a 5 GHz band WLAN antenna. The investigated antenna has a small size, light weight, low cost, omni-directional radiation pattern, high gain, and high efficiency.

Hemisphere Type Lunegerg Lens Antenna with a Reflector (반사판 부착 반구형 르네베르그렌즈 안테나)

    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.1006-1014
    • /
    • 2000
  • Hemisphere type Luneberg lens antenna with a reflector(frequency : 9.375 GHz, -3 dB beam width 6$^{\circ}$, diameter 30.3 cm(about 10 A), which is miniaturized and lightweightized by attaching a reflector on a section of half the Luneberg lens antenna, is designed and fabricated on the basis of Luneberg lens antenna from which easy beam pointing is acquired only by movement of 1st radiator. Measurement shows -3dB beamwidth is 6.1$^{\circ}$ in case of E-plane and 5.5$^{\circ}$ in case of H-plane. These are good agreements with expected value. Gain of this antenna is 26dBi(Aperture efficiency for uniform distribution : $\pi$ = 44.97%) which is greater than that of 1st radiator(Rectangular microstrip antenna) by 20.4 dB. And, after calculating the approximated pattern of the 1st radiator, far-field pattern, whose source is the second aperture source farmed from the approximated pattern of the 1st radiator is computed. Comparing this far-field pattern with the expected pattern, a (relatively) good agreement is observed. Circular polarization Luneberg lens antenna is also manufactured by making 1st radiator so that it has the characteristics of LHCP and RHCP radiation. The results are as followings : -3 dB beamwidth 5.8$^{\circ}$ , side lobe level -15.3 dB, isolation between LHCP and RHCP radiation 2543, axial ratio 2 dB bandwidth about 1.4 GHz(14.9%).

  • PDF

Dual-band Planar Monopole Antenna for Autonomous Vehicle (자율주행자동차를 위한 이중대역 평판 모노폴 안테나)

  • Yoon, Yonghyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2019
  • In this paper, a dual-band antenna is proposed for the autonomous vehicle as well as omni-directional. The proposed antenna operates in the 4G/LTE band (1,710~2,170MHz) and 5G/NR band (3,400~3,700MHz). In order to obtain the dual-band operation, the planar monopole antenna is proposed as the novel structure with single port of the 50ohm. To give the properties of dual-band, an additional antenna element with slit was added to the planar monopole antenna, and then a structural adjustment parameter was optimized for achieving the target performance in bands. The planar monopole antenna in the LTE band acts as the coupled feed for the added parasitic radiator in the 5G NR band. The proposed antenna has $38.5{\times}36.0{\times}1.0[mm^3]$ on a ground with diameter of 96mm. From the fabrication and measurement results, the impedance bandwidth (VSWR<2) of the proposed antenna covers 1,480~2,260MHz (LTE band: 1,710~2,170MHz) and 3,310~3,930MHz (5G NR band: 3,400~3,700MHz). The proposed planar monopole antenna also obtained the measured gain and radiation pattern of omni-directional radiation pattern in the anechoic chamber.

Prediction of the Radiated Noise from the Vehicle Intake System (자동차 흡기계의 방사소음 예측에 대한 연구)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon;Lee, Seong-Hyun;Shinoda, K.;Kitahara, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.105-108
    • /
    • 2005
  • The radiated noise from the automotive intake system should be predicted at the design stage. To this end, the precise measurement of in-duct acoustic source parameters of the intake system, i.e., the source strength and source impedance, is essential. Most of previous works on the measurement of acoustic source parameters were performed under a fixed engine speed condition. However, the requirement of vehicle manufacturer is the noise radiation pattern as a function of engine speed. In this study, the direct method was employed to measure the source parameters of engine intake system under a fixed engine speed and engine run-up condition. It was noted that the frequency spectra of source impedance hardly changes with varying the engine speed. Thus, it is reasonable to calculate the source strength under the engine run-up condition by assuming that source impedance is invariant with engine speed. Measured and conventional source models, i.e., constant pressure source, constant velocity source, and non-reflective source, were utilized to predict insertion loss and radiated sound pressure level. A reasonable prediction accuracy of radiated sound pressure level spectra from the intake system was given in the test vehicle when using the measured source characteristics which were acquired under the operating condition.

  • PDF

Noise Source Identification and Acoustic Radiation Power Reduction of Hard Disk Drive Using Sound Intensity (음향 인텐시티를 이용한 하드디스크 드라이브의 소음원 파악 및 음향파워 제어)

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Koo, Ja-Choon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1540-1548
    • /
    • 2000
  • Sound intensity techniques and ODS(Operational Deflection Shape) techniques are applied to identify the acoustic noise source of a hard disk drive and its control system. The sound intensity is used to visualize the noise source locations, and the ODS information to visualize the vibration pattern and to obtain the dynamic characteristics of the noise sources. The measurement systems are customized to accurately measure the sound intensity and ODS distributions of HDD system in space domains as well as frequency domains. The measurement systems for the sound absorption and transmission loss of materials are also used to support the background data for the efficient noise control. Using the visual information of source locations and its dynamic characteristics, the partial noise barrier structure and optimum absorption are designed and its controlled sound power level is proved to be under 3.1 Bel(Idle)/3.3Bel (Seek) which is the lowest level in the disk drive industry.

  • PDF

Band-Notched Ultra-Wideband Antenna with Asymmetric Coupled-Line for WLAN and X-Band Military Satellite

  • Lee, Jun-Hyuk;Sung, Young-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.34-37
    • /
    • 2013
  • This paper presents a novel ultra-wideband (UWB) antenna that rejects narrow and broad bands and is suitable for wireless communications. The base of the proposed antenna has a circular patch that can cover the UWB frequency range (3.1~10.6 GHz). The interference issues caused by co-existence within the UWB operation frequency are overcome by a design that uses a parallel-coupled asymmetric dual-line with a circular monopole antenna. The proposed antenna showed a stable radiation pattern, realized gain and reflection coefficient lower than -10 dB across the UWB operation bandwidth except for 5.15~5.85 GHz and 7.25~8.4 GHz. The fabrication, simulation, and measurement results obtained for the proposed antenna were in good agreement with the expected values.