• Title/Summary/Keyword: Radiation model

Search Result 2,257, Processing Time 0.032 seconds

Heat Transfer Analysis of the Radiation Shield in Cryogenic Systems (극저온 시스템의 복사쉴드의 열전달 해석)

  • 정은수;장호명;박희찬;양형석
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.124-128
    • /
    • 2002
  • A numerical model to obtain the temperature distribution in a radiation shield of cryogenic systems was proposed. Conformal mapping was used to transform the eccentric physical region of the upper plate to the concentric numerical region. The effects of the thickness of the radiation shield, the emissivities of the vacuum chamber and the radiation shield, and the eccentricity between the centers of the upper plate and the contact area with a cryocooler on the maximum temperature difference in a radiation shield were shown.

Assessment of Temporal Trend of Radiation Dose to the Public Living in the Large Area Contaminated with Radioactive Materials after a Nuclear Power Plant Accident (원전사고 후 광역의 방사성 오염부지 내 거주민에 대한 시간에 따른 피폭방사선량 평가)

  • Go, A Ra;Kim, Min Jun;Cho, Nam Chan;Seol, Jeung Gun;Kim, Kwang Pyo
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were $4.3{\sim}96kBq\;m^{-2}$ for $^{134}Cs$, $1.4{\sim}300kBq\;m^{-2}$ for $^{137}Cs$, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging $0.11{\sim}2.4mSv\;y^{-1}$ at Kawauchi area and $0.69{\sim}1.1mSv\;y^{-1}$ at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses. The estimated doses well agreed with the measurement data. This study results can be applied to radiation dose assessments at the contaminated area for radiation safety assurance or emergency preparedness.

Radiation-induced thermal conductivity degradation modeling of zirconium

  • Sangil Choi;Hyunmyung Kim;Seunghwan Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1277-1283
    • /
    • 2024
  • This study presents a radiation-induced thermal conductivity degradation (TCD) model of zirconium as compared to the conventional UO2 TCD model. We derived the governing factors of the radiation-induced TCD model, such as maximum TCD value and temperature range of TCD. The maximum TCD value was derived by two methods, in which 1) experimental result of 32 % TCD was directly utilized as the maximum TCD value and 2) a theoretical approach based on dislocation was applied to derive the maximum TCD value. Further, the temperature range of TCD was determined to be 437-837 K by 1) experimental results of post-annealing of irradiation hardening as compared to 2) the rate theory and thermal equilibrium. Consequently, the radiation-induced TCD model of zirconium was derived to be $f_r=1-{\frac{0.32}{1+{\exp}\,\{(T-637)/45\}}}$. Because the thermal conductivity of zirconium is one of the factors determining the storage and transport system, this newly proposed model could improve the safety analysis of spent fuel storage systems.

Analysis of Observation Environment with Sky Line and Skyview Factor using Digital Elevation Model (DEM), 3-Dimensional Camera Image and Radiative Transfer Model at Radiation Site, Gangneung-Wonju National University (수치표고모델, 3차원 카메라이미지자료 및 복사모델을 이용한 Sky Line과 Skyview Factor에 따른 강릉원주대학교 복사관측소 관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae;Jang, Jeong-Pil
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.61-74
    • /
    • 2019
  • To investigate the observational environment, sky line and skyview factor (SVF) are calculated using a digital elevation model (DEM; 10 m spatial resolution) and 3 dimensional (3D) sky image at radiation site, Gangneung-Wonju National University (GWNU). Solar radiation is calculated using GWNU solar radiation model with and without the sky line and the SVF retrieved from the 3D sky image and DEM. When compared with the maximum sky line elevation from Skyview, the result from 3D camera is higher by $3^{\circ}$ and that from DEM is lower by $7^{\circ}$. The SVF calculated from 3D camera, DEM and Skyview is 0.991, 0.998, and 0.993, respectively. When the solar path is analyzed using astronomical solar map with time, the sky line by 3D camera shield the direct solar radiation up to $14^{\circ}$ with solar altitude at winter solstice. The solar radiation is calculated with minutely, and monthly and annual accumulated using the GWNU model. During the summer and winter solstice, the GWNU radiation site is shielded from direct solar radiation by the west mountain 40 and 60 minutes before sunset, respectively. The monthly difference between plane and real surface is up to $29.18M\;m^{-2}$ with 3D camera in November, while that with DEM is $4.87M\;m^{-2}$ in January. The difference in the annual accumulated solar radiation is $208.50M\;m^{-2}$ (2.65%) and $47.96M\;m^{-2}$ (0.63%) with direct solar radiation and $30.93M\;m^{-2}$ (0.58%) and $3.84M\;m^{-2}$ (0.07%) with global solar radiation, respectively.

A Development of Thermal Radiation Plume Modelling for Heat Transfer to KSLV-II Engine Base (한국형 발사체 기저부 열전달 해석을 위한 플룸 복사 모델링 개념 개발)

  • Kim, Seong-Lyong;Ko, Ju-Yong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.507-514
    • /
    • 2012
  • In the present research, NASA LRB plume radiation models are reconstructed with Thermal Desktop software, where the radiation to vehicle base environment can be calculated. The calculation shows the similar radiation heat compared to NASA prediction. Based on LRB plume radiation model, a KSLV-II thermal radiation model is proposed.

  • PDF

Effect of radiation model on simulation of water vapor - hydrogen premixed flame using flamelet combustion model in OpenFOAM

  • Kim, Sangmin;Kim, Jongtae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1321-1335
    • /
    • 2022
  • This study was conducted to investigate the effect of absorption coefficient models on the P1 radiation model for a premixed hydrogen flame containing the water vapor. A CFD combustion simulation analysis was performed using XiFoam, one of the open-source CFD solvers in OpenFOAM. The solver using the flamelet combustion model has been modified to implement radiative heat transfer. The absorption coefficient models used in this study the grey-mean model and constant model, and for comparison, case without radiation was added. This CFD simulation study consisted of benchmarking the THAI HD-15 and HD-22 experiments. The difference between the two tests is the inclusion of water vapor in the condition before ignition. In the case of the HD-22 experiment containing water vapor in the initial condition, the simulation results show that the grey-mean absorption coefficient model has a strong influence on the temperature decrease of the flame and on the change in pressure inside the vessel.

A MODEL FOR PROTECTIVE BEHAVIOR AGAINST THE HARMFUL EFFECTS OF RADIATION FOR RADIOLOGICAL TECHNOLOGISTS IN MEDICAL CENTERS

  • Han, Eun-Ok;Moon, In-Ok
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.95-101
    • /
    • 2009
  • Protective behavior of radiological technologists against radiation exposure is important to achieve reduction of the patient doses without compromising medical achievements. This study attempts to provide a basic model for the sophisticated intervention strategy that increases the level of the protective behavior of the technologists. The model was applied to real situations in Korea to demonstrate its utility. The results of this study are summarized as follows: First, the protective environment showed the highest relationship in the factors considered, r=0.637 (p<0.01). Secondly, the important factors were protective environment in environment characteristics, expectation for the protective behavior 0.228 (p<0.001), self-efficacy 0.142 (p<0.001), and attitude for the protective behavior 0.178 (p<0.001) in personal characteristics, and daily patient -0.112 (p<0.001) and number of the participation in the education session for the protective behavior 0.074 (p<0.05). Thirdly, the final protective behavior model by a path analysis method had direct influence on the attitude 0.171 (p<0.01) and environment 0.405 (p<0.01) for the protective behavior, self efficacy 0.122 (p<0.01), expectation for the protective behavior 0.16 (p<0.01), and self-efficacy in the specialty of projects 0.154 (p<0.01). The acceptance of the model determined by the absolute fit index (GFI), 0.969, and by the incremental fit index (CFI), 0.943, showed very significant levels. Value of $x^2$/df that is a factor applied to verify the acceptance of the model was 37, which implies that the result can be accepted in the desirable range. In addition, the parsimonious fit index configured by AGFI (0.890) and TLI (0.852) was also considered as a scale that accepts the model in practical applications. In case of the establishment of some specific intervention strategies based on the protective behavior model against harmful radiation effects proposed in this study, the strategy will provide an effective way to prevent medical harmful radiation effects that could cause severe injuries to people.

Radiation Dose Measurement and Model Comparison at the Flight Level (비행고도 상에서의 우주방사선 관측 및 모델 비교)

  • Yi, Wonhyeong;Kim, Jiyoung;Jang, Kun-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.91-97
    • /
    • 2018
  • High-energy charged particles are comprised of galactic cosmic rays and solar energetic particles which are mainly originated from the supernova explosion, active galactic nuclei, and the Sun. These primary charged particles which have sufficient energy to penetrate the Earth's magnetic field collide with the Earth's upper atmosphere, that is $N_2$ and $O_2$, and create secondary particles and ionizing radiation. The ionizing radiation can be measured at commercial flight altitude. So it is recommended to manage radiation dose of aircrew as workers under radiation environment to protect their health and safety. However, it is hard to deploy radiation measurement instrument to commercial aircrafts and monitor radiation dose continuously. So the numerical model calculation is performed to assess radiation exposure at flight altitude. In this paper, we present comparison result between measurement data recorded on several flights and estimation data calculated using model and examine the characteristics of the radiation environment in the atmosphere.

Physiological Characterization of Mono-Cotyledonous Model Plant by Ionizing Irradiation (단자엽 모델 식물의 이온화 에너지원에 따른 생리 활성)

  • Song, Mira;Kim, Sun-Hee;Jang, Duk-Soo;Kang, Si-Yong;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Park, Yong Dae;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The present study has been performed to compare the physiological analysis of monocot model plant (rice) in response to ionizing irradiations (cosmic-ray, gamma-ray, and Ion beam). Ionizing radiations were implanted into monocot model plant (rice) seed. After irradiation, the seeds were planted in the plastic pots for a growth period of one month. Thereafter, the morphological and physiological characteristics including malondealdehyde (MDA) and chlorophyll content, activities of antioxidant enzymes in irradiation samples were investigated. We are confirmed that the activity level of MDA and chlorophyll content were not changed by ionizing irradiation samples. However, the free radical contents were increased in all irradiated plants. And the activities of SOD, POD, and APX were significantly increased by irradiation compared with non-irradiation plant.

A Study on the Prediction of Self-absorption in Opposed Flames Using WSGGM-Based Spectral Model (파장별 회체가스중합모델을 이용한 대향류 화염에서의 복사 흡수 예측에 관한 연구)

  • Kim, Uk-Jung;Viskanta, Raymond;Gore, Jay Prabhakar;Zhu, Xuelei
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.600-609
    • /
    • 2001
  • WSGGM based low-resolution spectral model for calculating radiation transfer in combustion gases is applied to estimate self-absorption of radiation energy in one-dimensional opposed flow flames. Development of such a model is necessary in order to enable detailed chemistry-radiation interaction calculations including self-absorption. Database of band model parameters which can be applied to various one-dimensional opposed flow diffusion and partially premixed flames is created. For the validation of the model and database, low resolution spectral intensities at fuel exit side are calculated and compared with the results of a narrow band model with those based on the Curtis-Godson approximation. Good agreements have been found between them. The resulting radiation model is coupled to the OPPDIF code to calculate the self-absorption of radiant energy and compared with the results of an optically thin calculation and the results of a discrete ordinates method in conjunction with the statistical narrow band model. Significant self-absorption of radiation is found for the flames considered here particularly for the fuel side of the reacting zone. However, the self-absorption does not have significant effects on the flame structure in this case. Even in the case of the low velocity diffusion flame and the partially premixed flame of low equivalence ratio, the effects of self-absorption of radiation on the flame temperature and production of minor species are not significant.