Radiation induced lung injury has long been considered a treatment limiting factor for patients requiring thoracic radiation. This radiation induced lung injury happens early as well as late. Radiation induced lung injury can occur in two phases viz. early (< 6 months) when it is called radiation pneumonitis and late (>6 months) when it is called radiation induced lung fibrosis. There are multiple factors that can be patient, disease or treatment related that predict the incidence and severity of radiation pneumonitis. Radiation induced damage to the type I pneumocytes is the triggering factor to initiate such reactions. Over the years, radiation therapy has witnessed a paradigm shift in radiation planning and delivery and successfully reduced the incidence of lung injury. Radiation pneumonitis is usually a diagnosis of exclusion. Steroids, ACE inhibitors and pentoxyphylline constitute the cornerstone of therapy. Radiation induced lung fibrosis is another challenging aspect. The pathophysiology of radiation fibrosis includes continuing inflammation and microvascular changes due to pro-angiogenic and profibrogenic stimuli resembling those in adult bronchiectasis. General supportive management, mobilization of airway secretions, anti-inflammatory therapy and management of acute exacerbations remains the treatment option. Radiation induced lung injury is an inevitable accompaniment of thoracic radiation.
To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.
Background: Radiation therapy plays an important role in lung carcinoma treatment. However, the incidence of symptomatic radiation-induced lung injury is high. This study aimed to evaluate radioprotective effects of flavonoids extracted from Astragalus complanatus and mechanisms of action against radiation damage. Methods: Alteration in antioxidant status and levles of several cytokines were investigated in BABL/C mice treated with 4 mg/kg b.wt. flavonoids after exposure to 10Gy thoracic radiation. Results: Serum levels of SOD in the flavonoids+radiation group were significantly higher compared to the radiation control group, while TGF-${\beta}1$ and IL-6 were lower. Mice in the radiation control group displayed more severe lung damage compared with the flavonoids+radiation group. The expression of TGF-${\beta}1$ and TNF-${\alpha}$ in the radiation control group was markedly increased in alveolar epithelial cells and macrophages of the alveolar septum. Conclusions: From the results of the present study, flavonoids could be excellent candidates as protective agents against radiation-induced lung injury.
Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when administered before or after irradiation, and against low doses (${\leq}5Gy$) to the whole body or high doses (12-13.5 Gy) to the whole thorax. This is particularly relevant since apart from the possibility of using it in pre-conditioning regime in radiotherapy, it could also be used during nuclear plant leakage/accidents and radiological terrorism, which are not pre-determined scenarios. However, considering the infancy of the field of plant-based radioprotectors, all the above-mentioned plant extracts/plant-derived compounds deserves further stringent study in different models of radiation injury.
47 out of 56 cases of intact uterine cervix cancer treated by radiation at the Hanyang University Hospital were followed 18 months or more after treatment. (7 patients died before 18 months, 2 cases lost to follow-up). Age distribution reveal 5 cases in 30's, 18 cases in 40's, 17 cases in 50's, 7 cases in 60's. Histologically, all cases were squamous cell type except one case of adenocarcinoma. 1. 45 cases were treated by combined external Co-60 irradiation and intracavitary irradiation by Cs-137 small sources. 1 case was treated by external irradiation only, and 1 case by intracavitary only. 2. Rectal injuries were observed in 13 cased (27.6%), 4 cases in Grade 1, 8 cased in Grade 2 and 1 cases in Grade 3 which needed surgical management. 3. Average intervals of rectal injury following treatment was 9.2 months varying from 5 to 15 months. 4. Relation between rectal injury and point A dose reveal 6 cases between 7000-7999 rad and 6 cases between 8000-8999 rad and 1 case above 9000 rad. Even though there is no direct relation between point A dose and rectal injury, it is expected that rectal injury increases as point A dose increase. 5. In the normal condition, rectal injury can't be attributed to one major cause. Radiation dose, small source distribution, general condition of patients, local anatomy of the individual patient, history of PID and previous surgery, all play complex roles.
It has been known that $\gamma$-irradiation usually induces cell death in regenerating stem cell in normal tissues like skin, intestine and hematopoietic organ. The experiment were carried out to evaluate the early response of radiation injury in radiosensitive and intermediate radiosensitive tissues in feeding and starving rats with the doses of 3.5 and 7.0 Gy. The results of the study showed that the histological phenomenon was apoptosis in the doses of the radiation as the early response of tissue injury. Apoptosis were showed organ-specific and cellular specific responses suggesting that the selection of apoptosis be exactly focused on highly renewal organs and cells. It was interesting that the rats starved for 72 hours prior to irradiation induced less apoptosis in liver than fed rats. As for cellular responses it appeared that apoptotic cells were mostly distributed in ductal or periportal cells in liver of feeding rats unlikely in liver of Starving rots which showed no difference in zonal distribution. In salivary gland apoptotic cells in fed rats were highly induced in intercalating and ductal cell population than in acinar cell population although unlikely in starved rats. This study showed the value of apoptosis using the detection system of TUNEL for evaluating cellular damage after radiation injury and the diminished effect of starvation on cell damage after ionizing irradiation.
Chang, Hsien Pin;Cho, Jae Ho;Lee, Won Jai;Roh, Hyun;Lee, Dong Won
Archives of Plastic Surgery
/
v.45
no.5
/
pp.403-410
/
2018
Background Radiation-induced skin injury is a dose-limiting complication of radiotherapy. To investigate this problem and to develop a framework for making decisions on treatment and dose prescription, a murine model of radiation-induced skin injury was developed. Methods The dorsal skin of the mice was isolated, and irradiation was applied at single doses of 15, 30, and 50 Gy. The mice were followed for 12 weeks with serial photography and laser Doppler analysis. Sequential skin biopsy samples were obtained and subjected to a histological analysis, immunostaining against transforming growth factor beta (TGF-${\beta}$), and Western blotting with Wnt-3 and ${\beta}$-catenin. Increases in the levels of TGF-${\beta}$, Wnt, and ${\beta}$-catenin were detected after irradiation. Results All tested radiation doses caused progressive dermal thickening and fibrosis. The cause of this process, however, may not be radiation alone, as the natural course of wound healing may elicit a similar response. The latent appearance of molecular and histological markers that induce fibrosis in the 15 Gy group without causing apparent gross skin injuries indicates that 15 Gy is an appropriate dose for characterizing the effects of chronic irradiation alone. Thus, this model best mimics the patterns of injury that occur in human subjects. Conclusions This animal model can be used to elucidate the gross and molecular changes that occur in radiation-induced skin injury and provides an effective platform for studying this adverse effect without complicating the process of wound healing.
Radiation pneumonitis and pulmonary fibrosis are the main complications with radiotherapy for thoracic neoplasms, directly limiting the efficient dose in clinical application and currently there are few medicines that effectively function as radioprotectants. However, a TLR5 agonist, CBLB502, was confirmed to have protective efficacy against hematopoietic and gastrointestinal radiation syndromes in mice and primates. This study points to a new direction for protection against thoracic radiation-induced pulmonary syndromes and skin injury by CBLB502. We utilized the TUNEL assay, pathological analysis and immunohistochemistry to obtain evidence thatCBLB502 could alleviate the occurrence of radiation pneumonitis and pulmonary fibrosis as well as radiation-induced skin injury. It may thus play a promising role in facilitating clinical radiotherapy of thoracic neoplasms.
Kim, Joong-Sun;Jang, Hyosun;Bae, Min-Ji;Shim, Sehwan;Jang, Won-Seok;Lee, Sun-Joo;Park, Sunhoo;Lee, Seung-Sook
Journal of Radiation Protection and Research
/
v.42
no.4
/
pp.189-196
/
2017
Background: The effects of radiation on tissues vary depending on the radiation type. In this study, a minipig model was used to compare the effects of ${\beta}$-rays from $^{166}Ho$ and ${\gamma}$-rays from $^{60}Co$ on the skin. Materials and Methods: In this study, the detrimental effects of ${\beta}$- and ${\gamma}$-irradiation on the skin were assessed in minipigs. The histopathological changes in the skin from 1 to 12 weeks after exposure to 50 Gy of either ${\beta}$- (using $^{166}Ho$ patches) or ${\gamma}$- (using $^{60}Co$) irradiation were assessed. Results and Discussion: The skin irradiated by ${\beta}$-rays was shown to exhibit more severe skin injury than that irradiated by ${\gamma}$-rays at 1-3 weeks post-exposure; however, while the skin lesions caused by ${\beta}$-rays recovered after 8 weeks, the ${\gamma}$-irradiated skin lesions were not repaired after this time. The observed histopathological changes corresponded with gross appearance scores. Seven days post-irradiation, apoptotic cells in the basal layer were detected more frequently in ${\beta}$-irradiated skin than in ${\gamma}$-irradiated skin. The basal cell density and skin thickness gradually decreased until 4 weeks after ${\gamma}$- and ${\beta}$- irradiation. In ${\beta}$-irradiated skin lesions, and the density and thickness increased sharply back to control levels by 6-9 weeks. However, this was not the case in ${\gamma}$-irradiated skin lesions. In ${\gamma}$-irradiated skin, cyclooxygenase-2 (COX-2) was shown to be expressed in the epidermis, endothelial cells of vessels, and fibroblasts, while ${\beta}$-irradiated lesions exhibited COX-2 expression that was mostly limited to the epidermis. Conclusion: In this study, ${\beta}$-rays were shown to induce more severe skin injury than ${\gamma}$-rays; however, the ${\beta}$-rays-induced injury was largely repaired over time, while the ${\gamma}$-rays-induced injury was not repaired and instead progressed to necrosis. These findings reveal the differential effects of ${\gamma}$- and ${\beta}$-irradiation on skin and demonstrate the use of minipigs as a beneficial experimental model for studying irradiation-induced skin damage.
Purpose: The degree of radiation injury to kidneys which are located within the limits of radiotherapy area is determined by the volume and the dose of radiation to which the organ is exposed. When the tolerance dose of the kidney is exceeded after a latent period of 6 months acute nephritis develops and after 18 months chronic nephritis ensues. Melatonin is known to prevent the oxidative injury of toxins and radiotherapy with its free radical scavenging capacity. Methods and Materials: In this study 8 weeks old 24 Sprague -Dawley rats were allocated into 4 groups: Control group; Radiotherapy group (20 Gy bilaterally in 5 fractions); Melatonin group (10 mg/kg intraperitoneally), and Melatonin+radiotherapy group (20 Gy Radiotherapy in 5 fractions+ melatonin 10 mg/kg intraperitoneally). After a follow-up period of 6 months BUN was determined in all groups. After rats were euthanized the kidneys were removed for histopathological examination under both light and electron microscopes. Results: After 6 months follow-up, both at light and electron microscopy levels, the rats in radiotherapy+melatonin group were significantly protected against the radiation injury comparing to radiotherapy group (p<0.05). Conclusion: It was shown in this experimental model that melatonin has protective effects against radiation injury to kidneys.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.