• Title/Summary/Keyword: Radiation heat loss

Search Result 163, Processing Time 0.027 seconds

CH4/Air 예혼합화염의 하류영역에서 체류시간 및 열손실에 의한 NOx의 생성특성 (The Effect of Residence Time and Heat Loss on NOx Formation Characteristics in the Downstream Region of CH4/Air Premixed Flame)

  • 황철홍;현승호;탁영조;이창언
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.99-108
    • /
    • 2007
  • In this study, the NOx formation characteristics of one-dimensional $CH_4$/Air premixed flame using detailed-kinetic chemistry are examined numerically. The combustor length and the amount of heat loss are varied to investigate the effect of residence time and heat loss on the NOx formation in a post-flame region. In the flame region, NO is mainly produced by the Prompt NO mechanism including $N_2$O-intermediate NO mechanism over all equivalence ratios. However, thermal NO mechanism is more important than Prompt NO mechanism in the post-flame region. In the case of adiabatic condition, the increase of combustor length causes the remarkable increase of NO emission at the exit due to the increase of residence time. On the other hand, NO reaches the equilibrium state in the vicinity of flame region, considering radiation and conduction heat losses. Furthermore the NO, in the case of $\phi$=1.2, is gradually reduced in the downstream region as the heat loss is increased. From these results, it can be concluded that the controls of residence time and heat loss in a combustor should be recognized as an important NOx reduction technology.

Estimation of Heat Losses From the Receivers for Solar Energy Collecting System of Korea Institute of Energy Research

  • Ryu, Siyoul;Seo, Taebeom
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1403-1411
    • /
    • 2000
  • Heat losses from the receivers for a dish-type solar energy collecting system constructed at Korea Institute of Energy Research are analyzed. The Stine and McDonald's model is used to estimate the convection loss. The Net Radiation method and the Monte-Carlo method are used to calculate the radiation heat transfer rate from the inside surface of the receiver to the surroundings. Two different receivers are suggested here and the performances of the receivers are estimated and compared with each other based on the prediction of the amount of heat losses from the receivers. The effects of the receiver shape and the radiation properties of the surface on the thermal performance are investigated. The performance of Receiver I is better than that of Receiver II, and the amount of solar irradiation that is not captured by the captured by the receiver after being reflected by the concentrator becomes significant if the temperature of the working fluid is low.

  • PDF

퍼즐매트의 연소속도에 관한 연구 (A Study on the Burning Rate of Puzzle Mats)

  • 박형주
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.84-90
    • /
    • 2008
  • The mass loss rate and heat release rate of puzzle mats were analysed using variable external irradiation level. Five samples of puzzle mat were tested in this study : Type A, B, C, D and E. Type A, B and C are all general grades whereas Type D and E are both Flame retardant grades. Incident heat fluxs of $25kW/m^2$, $35kW/m^2$, $50kW/m^2$ and $70kW/m^2$ were selected for these experiments. All samples were tested in the horizontal orientation and were wrapped in a single layer of aluminum foil. Each sample was nominally 20mm thick and 100mm square. The combustion heat and mass loss rate were carried out from Oxygen bomb calorimeter and mass loss calorimeter according to ISO 5660-1 respectively. Heat release rates were calculated using the equation ${\dot{Q}}=A_f{\dot{m}}"_X{\Delta}H_c=0.75A_f{\dot{m}}"{\Delta}H_c$. where $A_f$ is the horizontal burning area of the sample, $\dot{m}"$ is mass loss rate per unit area, ${\Delta}H_c$ is complete heat of combustion and 0.75 is combustion efficiency.

메탄/공기 확산화염에서 복사 열손실로 인한 맥동 불안정에 관한 수치해석 (A Numerical Study on Radiation-Induced Oscillatory Instability in CH$_4$/Air Diffusion Flames)

  • 손채훈;정석호
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.29-35
    • /
    • 2001
  • Radiation-induced oscillatory instability in CH$_4$/Air diffusion flames is numerically investigated by adopting detailed chemistry. Counterflow diffusion flame is employed as a model flamelet and optically thin gas-phase radiation is assumed. Attention is focused on the extinction regime induced by radiative heat loss, which occurs at low strain rate. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Depending on the initial strain rate and the amount of perturbed strain rate, transient evolution of the flame exhibits various types of flame-evolution behaviors. Basically, the dynamic behaviors can be classified into two types, namely oscillatory decaying solution and diverging solution leading to extinction.

H2/CO 합성가스의 연소 특성에 관한 연구 (Study on Combustion Characteristics of H2/CO Synthetic Gas)

  • 김태권;박정;조한창
    • 한국환경과학회지
    • /
    • 제17권6호
    • /
    • pp.689-698
    • /
    • 2008
  • Numerical study is conducted to predict effects of radiative heat loss and fuel composition in synthetic gas diffusion flame diluted with $CO_2$. The existing reaction models in synthetic gas flames diluted with $CO_2$ are evaluated. Numerical simulations with and without gas radiation, based on an optical thin model, are also performed to concrete impacts on effects of radiative heat loss in flame characteristics. Importantly contributing reaction steps to heat release rate are compared for synthetic gas flames with and without $CO_2$ dilution. It is also addressed that the composition of synthetic gas mixtures and their radiative heat losses through the addition of $CO_2$ modify the reaction pathways of oxidation diluted with $CO_2$.

적외선 열화상 분석을 통한 온실의 열손실 진단 및 평가 (Heat Loss Audit and Assessment of the Greenhouses Using Infrared Thermal Image Analysis)

  • 문종필;윤남규;이성현;김학주;이수장;김영화
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.67-73
    • /
    • 2010
  • Unlike Urban building, horticultural facilities has a lot of heat loss through plastic or glass covering material which could be much influential to growing plant and consuming energy for heating greenhouse. In many cases, heat loss from a break of cover, a gap of joint sealing, the entrance to greenhouse and windows for ventilation are the main factors considered in calculating the heating load for horticultural facilities. however the normal observation through human eye and digital camera could not recognize where the heat loss occurred. but the infrared thermal image camera with detecting thermal difference could be very effective for noticing heat loss by analyzing infrared thermal image. In this study, greenhouse structure, covering material, internal and external provisions for Horticultural facilities were surveyed in different sites and Infrared thermal camera shooting and image analysis were performed for auditing heat loss from cultivation facilities The results from this study were that unexpected heat loss had been noticed in 7 representative cases of greenhouse such as side wall covered with single or double plastic, and the joint of horizontal thermal curtain, roof without horizontal thermal curtain, entrance to greenhouse, windows for ventilation. the most important factors for keeping heat energy were whether the horizontal thermal curtain with multifold thermal material was installed or not. The internal or external covering using multifold thermal curtain proved to be the most effective ways to keep heat energy from losing through heat transmission, heat radiation. from inside to outside the horticultural facilities.

AMTEC내 저압용기에서의 열복사차단막 형상에 따른 발전량 향상 해석 (Analysis on Improving Power of Thermal Radiation Shield in Low Pressure Chamber of AMTEC)

  • 정원식;;이욱현;이계복;이석호
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.54-62
    • /
    • 2016
  • 열을 전기로 바꾸는 장치로 가장 효율이 우수한 장치인 AMTEC은 알칼리금속을 작동유체로 하여 열을 직접적으로 전기로 변환시키는 장치이다. AMTEC은 저압용기, 고압용기, 베타 알루미나 고체 전해질, 그리고 순환윅으로 이루어져있다. AMTEC에서의 열손실은 주요하게 저압용기에서의 BASE와 응축부 사이에서 발생하는 열복사손실이며, 암텍의 발전량은 BASE의 온도유지력에 영향을 받기에 BASE의 표면온도를 고온으로 유지시켜주어야 고효율 발전량은 일정하게 유지할 수 있다. 이를 위하여 저압챔버에서의 복사 열손실을 줄이고 BASE온도는 상승시키고, AMTEC 시스템의 발전량 향상을 위하여 저압용기 내부의 6가지 형태의 열복사차단막에 따른 출력을 전산유체해석을 통하여 분석하였다. 분석에서 최적의 열복사차단막 형상은 수직부에 곡률을 가질 때이며, 그 때의 온도에 대한 무차원수(응축부온도/BASE온도 비)는 0.665 정도이고 출력은 약 17.69 W 정도로 다른 형상에 대비하여 높은 발전량을 갖는 것으로 계산되었다. 높이에 따른 발전량의 차이에서는 수평차단막이 BASE 상부로부터 멀리 떨어진 경우 발전량이 가장 우수하며, 17.58W 정도로 나타났다. 여러 개의 작은 홀과 다중 수평차단막을 설계한 경우는 기준이 되는 형상보다 오히려 발전량이 감소하였으며, 각각 0.91W, 2.06W 정도 감소하였다.

풍력터빈 PM형 동기발전기의 와전류손실과 열 해석에 관한 연구 (A Study on Rotor Eddy Current Loss and Thermal Analysis of PM Synchronous Generator for Wind Turbine)

  • 최만수;장영학;박태식;정문선;문채주
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1575-1581
    • /
    • 2014
  • In this paper, eddy current loss, iron loss and heat transfer of PMSG with 2,000kW capacities were analyzed for wind turbine. The PMSG with 3 split magnet was analyzed using ansoft maxwell commercial program and, generator was tested by Back to Back converter with no load condition at laboratory. Rotor surface temperature was measured by Pt100 sensors for investigating heat transfer from rotor to atmosphere. The simulation results shows 27.4kW eddy current loss in no load condition and 50.2kW eddy current loss in rated load condition with 3 split magnet, and also shows 4.3kW iron loss in no load condition and 7.3kW iron loss rated load condition. The heat transfer coefficient of convection between rotor surface and atmosphere was investigated by $9.6W/m^2{\cdot}K$. Therefore the heat transfer from rotor to atmosphere was about 17kW(54%) and from rotor to air-gap was about 14.6kW(46%) in no load condition. It is identified that the cooling system for stator have to include the 46% of iron loss, and heat dissipation structure of rotor surface have to be suggested and designed for efficiency improvement of generator.

저신장율 에지 화염의 진동 불안정성 (Oscillatory Instability of Low Strain Rate Edge Flame)

  • 김강태;박준성;김정수;오창보;길상인;박정
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.343-349
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral flame size was less than burner nozzle diameter and thus lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The oscillation is the direct outcome from the advancing and retreating edge flame. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which can be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

저가형 열영상 시스템을 위한 실리콘 윈도우 제작 (Fabrication of Silicon Window for Low-price Thermal Imaging System)

  • 성병목;정동건;방순재;백선민;공성호
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.264-269
    • /
    • 2015
  • An infrared (IR) bolometer measures the change of resistance by absorbing incident IR radiation and generates a signal as a function of the radiation intensity. Since a bolometer requires temperature stabilization and light filtering except for the infrared rays, it is essential for the device to be packaged meeting conditions that above mentioned. Minimization of heat loss is needed in order to stabilize temperature of bolometer. Heat loss by conduction or convection requires a medium, so the heat loss will be minimized if the medium is a vacuum. Therefore, vacuum packaging for bolometer is necessary. Another important element in bolometer packaging is germanium (Ge) window, which transmits IR radiation to heat the bolometer. To ensure a complete transmittance of IR light, anti-reflection (AR) coatings are deposited on both sides of the window. Although the transmittance of Ge window is high for IR rays, it is difficult to use frequently in low-price IR bolometer because of its high price. In this paper, we fabricated IR window by utilizing silicon (Si) substrate instead of Ge in order to reduce the cost of bolometer packaging. To enhance the IR transmittance through Si substrate, it is textured using Reactive Ion Etching (RIE). The texturing process of Si substrate is performed along with the change of experimental conditions such as gas ratio, pressure, etching time and RF power.