• 제목/요약/키워드: Radiation heat loss

검색결과 163건 처리시간 0.026초

플라스틱 온실(温室)의 일사량(日射量) 분석(分析)과 열적(熱的) 환경(環境)의 시뮬레이션에 관(關)한 연구(硏究) -플라스틱 온실(温室)의 열적환경(熱的環境)의 시뮬레이션- (Analysis of solar radiation and simulation of thermal environment in plastic greenhouse -Simulation of thermal environment in plastic greenhouse-)

  • 박재복;고학균
    • Journal of Biosystems Engineering
    • /
    • 제12권2호
    • /
    • pp.16-27
    • /
    • 1987
  • Greenhouse farming was introduced to the Korean farmers in the middle of 1950's and its area has been increased annually. The plastic greenhouse, which is covered with polyethylene or polyvinyl chloride film, has been rapidly spread in greenhouse farming since 1970. The greenhouse farming greatly contributed to the increase of farm household income and the improvement of crop productivity per unit area. Since the greenhouse farming is generally practiced during winter, from November to March, the thermal environment in the plastic greenhouse should be controlled in order to maintain favorable condition for plant growing. Main factors that influence the thermal environment in the plastic greenhouse are solar radiation, convective and radiative heat transfer among the thermal component of the greenhouse, and the use of heat source. The objective of this study was to develop a simulation model for thermal environment of the plastic greenhouse in order to determine the characteristics of heat flow and effects of various ambient environmental conditions upon thermal environments within the plastic greenhouse. The results obtained are summarized as follows: 1. Simulation model for thermal environment of the plastic greenhouse was developed, resulting in a good agreement between the experimental and predicted data. 2. Solar radiation being absorbed in the plant and soil during the daytime was 75 percent of the total solar radiation and the remainder was absorbed in the plastic cover. 3. About 83 percent of the total heat loss was due to convective and radiative heat transfer through the plastic cover. Air ventilation heat loss was 5 to 6 percent of total heat loss during the daytime and 16 to 17 percent during the night. 4. The effectiveness of thermal curtain for the plastic greenhouse at night was significantly increased by the increase of the inside air temperature of the greenhouse due to the supplementary heat. 5. When the temperature difference between the inside and outside of the greenhouse was small, the variation of ambient wind velocity did not greatly affect on the inside air temperature. 6. The more solar radiation in the plastic greenhouse was, the higher the inside air temperature. Because of low heat storage capacity of the plant and soil inside the greenhouse and a relatively high convective heat loss through the plastic cover, the increase of solar radiation during the daytime could not reduce the supplymentary heat requirement for the greenhouse during the night.

  • PDF

열손실에 의한 확산-열 불안정성의 가속화 (Acceleration in Diffusive-thermal Instability by Heat Losses)

  • 박준성;박정;김정수
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.34-41
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses and Lewis number on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The excessive heat loss caused by the smaller burner diameter in which the flame length is an indicator of lateral conduction heat loss extends the region of flame oscillation and accelerates oscillatory instability in comparison to the previous study with the burner diameter of 26mm. Extinction behaviors quite different from the previous study are also addressed.

  • PDF

열손실에 의한 확산-열 불안정성의 가속화 (Acceleration in Diffusive-thermal Instability by Heat Losses)

  • 박준성;박정;이기만;김정수;김성초
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.145-152
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The dramatic change of burner diameters in which flame length is an indicator of lateral conduction heat loss was applied to examine the onset condition of edge flame oscillation and flame oscillation modes. Especially, extinction behaviors quite different from the previous study were observed.

  • PDF

150W LED등기구 방열을 위한 열 해석에 관한 연구 (A Study on Heat Simulation for Heat Radiation in 150W LED)

  • 소병문
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.79-85
    • /
    • 2016
  • For long life time and high efficiency, not necessary in improvement of LED chip structure, but also improve heat radiation for decrease heat in LED chip. In this study, efficiency decline factor has been investigated in LED lamp as study heat characteristic, luminance flux and heat resistance. When LED lamp temperature was increased, about 7% loss of luminance flux. In consequence of temperature analysis, width of fin was the most important factor of heat radiation. As a result, secure the enough heat path is very important factor of LED lamp design.

반사경 배치 및 흡수기 형상에 따른 접시형 태양열 집열기의 열손실 해석 (Analysis of Heat Loss with Mirror Array and Receiver Shapes on the Dish Solar Collector)

  • 서주현;마대성;김용;강용혁;서태범
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.35-41
    • /
    • 2008
  • The radiative heat loss from a receiver of a dish solar collector is numerically investigated. The dish solar collector considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparison of dish solar collectors, six different mirror arrays and four different receivers are considered. A parabolic- shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrays. The other mirror arrays which consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m are suggested for comparison. Their reflecting areas, which are 1.545 $m^{2}$, are the same. Four different receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. The radiative properties of the mirror surfaces and the receiver surfaces may vary the thermal performance of the dish solar collector so that various surface properties are considered. In order to calculate the radiative heat loss in the receiver, two kinds of methods are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. The collector efficiency is defined as the results of the optical efficiency and the receiver efficiency. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrays except the perfect mirror.

HTS 케이블 냉각용 역브레이튼 사이클 극저온 냉동기 설계에 관한 연구 (Design of Reverse Brayton Cycle Cryocooler System for HTS Cable Cooling)

  • 박재홍;권용하;김영수;박성출
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.58-65
    • /
    • 2003
  • The high temperature superconductivity(HTS) cable must be cooled below the nitrogen liquefaction temperature to applicate the cable in power generation and transmi-ssion system under the superconducting state. To obtain superconducting state. a reliable cryocooler system is required. Structural and thermal design have been performed to design cryocooler system operated with reverse Brayton cycle using gas neon as refrigerant. This cryocooler system consists of compressor. recuperator. coldbox. control valves and has 1 kW cooling capacity. Heat loss calculation was conducted for the given cryocooler system by considering the conduction and radiation through the multi-layer insulation(MLI) and high vacuum. The results can be summarized as: conduction heat loss is 7 W in valves and access port and radiation heat loss is 18 W through the surface of cryocooler. The full design specifications were discussed and the results were applied to construct in house HTS cable cooling system.

1 kW급 역브레이튼 극저온 냉동기 개발에 관한 연구 (A Study on 1 kW Development of Reverse Brayton Cycle Cryocooler System)

  • 권용하;박재홍;정종환;김영수
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.176-180
    • /
    • 2003
  • To obtain superconducting state, a reliable cryocooler system is required. Structural and thermal design have been performed to design cryocooler system operated with reverse Brayton cycle using gas neon as refrigerant. This cryocooler system consists of compressor recuperator, coldbox, control valves and has 1 ㎾ cooling capacity. Heat loss calculation was conducted for the given cryocooler system by considering the conduction and radiation through the multi-layer insulation (MLI) and high vacuum. The results can be summarized as; conduction heat loss is 7 W in valves and access port and radiation heat loss is 18 W through the surface of cryocooler. The full design specifications were discussed.

  • PDF

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.49-54
    • /
    • 2002
  • HANARO, 30 MW of research reactor, was installed at the depth of 13m in an open pool. The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the cote. The rest, $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to prevent the radiated gas from being lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection, and increased the radiation lovel on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2 m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated at a higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated by Visual Basic Program. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss increased. And it was verified that the radiation level above was reduced mote safely by increasing the capacity of heater.

하나로 수조 방사선 준위의 저감 특성 (Reduction Characteristics of Pool Top Radiation Level in HANARO)

  • 박용철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 2001
  • HANARO, 30MW of research reactor, was installed at the depth of 13m of open pool, The $90\%$ of primary coolant was designed to pass through the core and to remove the reaction heat of the core. The rest $10\%$, of the primary coolant was designed to bypass the core. And the reactor coolant through and bypass the core was inhaled at the top of chimney by the coolant pump to protect that the radiated gas was lifted to the top of reactor pool. But, the part of core bypass coolant was not inhaled by the reactor coolant pump and reached at the top of reactor pool by natural convection and increased the radiation level on the top of reactor pool. To reduce the radiation level by protecting the natural convection of the core bypass flow, the hot water layer (HWL, hereinafter) was installed with the depth of 1.2m from the top of reactor pool. As the HWL was normally operated, the radiation level was reduced to five percent ($5\%$) in comparing with that before the installation of the HWL. When HANARO was operated with higher temperature than the normal temperature of the HWL by operating the standby heater, it was found that the radiation level was more reduced than that before operation. To verify the reason, the heat loss of the HWL was calculated. It was confirmed through the results that the larger the temperature difference between the HWL and reactor hall was, the more the evaporation loss was increased. And it was verified that the radiation level above was reduced more safely by increasing the capacity of heater.

  • PDF

복사 열손실을 받는 대향류 확산화염의 불안정성 해석 (Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss)

  • 이수룡
    • 대한기계학회논문집B
    • /
    • 제36권8호
    • /
    • pp.857-864
    • /
    • 2012
  • 복사열손실을 받는 확산화염의 선형 안정성 해석을 수행하여 복사강도와 Damkohler 수에 대한 화염 불안정이 나타나는 조건을 확인하였다. 대향류 유동장을 모델로 하여 Lewis 수는 1로 가정하였다. 반응속도 제한에 의한 소염근처에서 교란의 증가율은 실수의 고유값을 가지며 안정한계는 정상상태 소염조건과 정확하게 일치한다. 반면에 복사 열손실에 의한 소염 영역 근처에서 증가율의 고유값은 복소수이며 정상상태 소염 전에 맥동 불안정성이 예측된다. 진동하는 화염온도가 양의 실수 고유값을 갖는 정상상태 화염온도 보다 클 경우에만 한계 순환 안정 특성이 나타난다. 만약 그 온도보다 작게 되면 화염은 회복되지 못하고 소염된다. 넓은 복사강도 범위에 대하여 복사 열손실에 의한 불안정성의 안정한계 곡선을 도시하였다.