• Title/Summary/Keyword: Radiation exposure work

Search Result 140, Processing Time 0.024 seconds

Risk Factors for Breast Cancer, Including Occupational Exposures

  • Weiderpass, Elisabete;Meo, Margrethe;Vainio, Harri
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The knowledge on the etiology of breast cancer has advanced substantially in recent years, and several etiological factors are now firmly established. However, very few new discoveries have been made in relation to occupational risk factors. The International Agency for Research on Cancer has evaluated over 900 different exposures or agents to-date to determine whether they are carcinogenic to humans. These evaluations are published as a series of Monographs (www.iarc.fr). For breast cancer the following substances have been classified as "carcinogenic to humans" (Group 1): alcoholic beverages, exposure to diethylstilbestrol, estrogen-progestogen contraceptives, estrogen-progestogen hormone replacement therapy and exposure to X-radiation and gamma-radiation (in special populations such as atomic bomb survivors, medical patients, and in-utero exposure). Ethylene oxide is also classified as a Group 1 carcinogen, although the evidence for carcinogenicity in epidemiologic studies, and specifically for the human breast, is limited. The classification "probably carcinogenic to humans" (Group 2A) includes estrogen hormone replacement therapy, tobacco smoking, and shift work involving circadian disruption, including work as a flight attendant. If the association between shift work and breast cancer, the most common female cancer, is confirmed, shift work could become the leading cause of occupational cancer in women.

Classification of Radiation Work in Korean Nuclear Power Plants

  • Changju Song;Tae Young Kong;Seongjun Kim;Jinho Son;Hwapyoung Kim;Jiung Kim;Hee Geun Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.239-256
    • /
    • 2023
  • The classification of the radiation work performed in Korean nuclear power plants (NPPs) must be understood to provide workers with more comprehensive radiation protection. This study used annual reports on occupational exposure to investigate and analyze the similarities and differences in the radiation work performed in Korean NPPs with pressurized water reactors (PWRs) and pressurized heavy water reactors (PHWRs). The results showed that the radiation work performed in Korean NPPs could be classified into three categories. Category 1 contains work at the highest level. This work can be divided into individual tasks belonging to Category 2, which enables the evaluation of the radiation dose during the work. The work in Category 2 consists of tasks from Category 3, which contains basic detailed tasks that are not further subdivided. This study emphasized the need for the systematic management of the radiation work performed in both Korean PWRs and PHWRs, such as the tasks in Category 3, which are similar, with similar working conditions, for PWRs and PHWRs. It also suggested the need to establish a list of radiation work for decommissioning because Kori Unit 1 and Wolsong Unit 1 are currently in permanent shutdown and preparations are being made for their decommissioning.

An Analysis of Radiation Field Characteristics for Estimating the Extremity Dose in Nuclear Power Plants (원전 종사자의 말단선량평가를 위한 고피폭 접촉 방사선장 특성분석)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.176-183
    • /
    • 2009
  • Maintenance on the water chamber of steam generator during outage in nuclear power plants (NPPs) has a likelihood of high radiation exposure to whole body of workers even short time period due to the high radiation exposure rates. In particular, it is expected that hands would receive the highest radiation exposure because of its contact with radiation materials. In this study, characteristic analysis of inhomogeneous radiation fields for contact operations was conducted using thermoluminescent dosimeter (TLD) readouts from the application tests of two-dosimeter algorithm to Korean NPPs in 2004. It is regarded that inhomogeneous radiation fields for contact operations in NPPs are dominated by high energy photons. In addition, field tests for workers who participated in maintenance on the steam generator during outage at Ulchin NPPs in 2009 and pressure tube replacement at Wolsong NPPs in 2009 were conducted to analyze radiation fields and to estimate the extremity dose. As a result, radiation fields were dominated by high energy photons.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

OPERATIONAL EXPERIENCE OF A TWO-DOSIMETER ALGORITHM FOR BETTER ESTIMATION OF EFFECTIVE DOSE AT KOREAN NUCLEAR POWER PLANTS

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.165-169
    • /
    • 2009
  • Two dosimeters are provided to radiation workers participating in tasks where high radiation exposure is expected during maintenance at nuclear power plants. At Korean nuclear power plants, two dosimeters are currently provided for tasks where exposure rates exceed 1 mSv/hr, the difference of equivalent dose to specific parts of the body is more than 30% and an exposure of more than 2 mSv is expected in a single task. These conditions for the provisioning of two dosimeters are based on previous field test results, and it is recommended that the dosimeters be worn on the chest and back. It was also found that the workers felt it was more convenient when they wore two dosimeters on chest and back rather than on chest and head. After the application of previous field test results to practice, it was found that the calculated effective dose for workers during radiation work was lower than the maximum dose of chest or back dosimeter by approximately 10%-30%. This performance is regarded not only to meet the international guideline but also to provide convenience for workers during radiation work.

A Review of Radiation Field Characteristics and Field Tests for Estimating on the Extremity Dose under Contact Tasks with Radioactive Materials (방사성물질과 접촉하는 작업의 손·발이 받는 피폭방사선량 평가에 대한 고찰)

  • Kim, Hee-Geun;Kong, Tae-Young;Dong, Kyung-Rae;Choi, Eun-Jin
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.123-130
    • /
    • 2017
  • Concerns about high radiation exposure to the hands of radiation workers who may contact with radioactive contamination on surfaces in a nuclear power plant (NPP) had been raised, and the Korean regulatory body required the extremity dose estimation during contact tasks with radioactive materials. Korean NPPs conducted field tests to identify the incident radiation to the hands of radiation workers who may contact with radioactive contamination during maintenance periods. The results showed that the radiation fields for contact tasks are dominated by high energy photons. It was also found that the radiation doses to the hands of radiation workers in Korean NPPs were much less than the annual dose limits for extremities. This approach can be applicable to measure and estimate the extremity dose to the hands of medical workers who handle the radioactive materials in a hospital.

A Field Test Assessment on the Extremity Doses of Highly-Exposed Radiation Workers During Maintenance Periods at Nuclear Power Plants in Korea (원전 계획예방정비기간 고피폭 접촉작업에서 방사선작업종사자의 말단선량 평가 현장시험)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • Maintenance on the water chamber of steam generator, the change of pressurizer heater, the removal of pressure tube feeder, and so on during outage in nuclear power plants (NPPs) has a likelihood of high radiation exposure to whole body of workers even short time period due to the high radiation exposure rates. In particular, it is expected that hands would receive the highest radiation exposure because of its contact with radiation materials. In this study, field tests on extremity dose assessment of radiation workers for contact works with high radiation exposure were conducted during the maintenance periods in Korean pressurized water reactors (PWRs) and pressurized heavy water reactors (PHWRs). In this field test, radiation workers were required to wear additional TLDs on the back and wrist, and an extremity dosimeter on fingers including a main TLD on the chest, while performing maintenance. As a result, it was found that the equivalent dose for fingers was distributed in the fixed range of deep dose and the equivalent dose for wrists.

A Study on the Individual Radiation Exposure of Medical Facility Nuclear Workers by Job (의료기관 핵의학 종사자의 직무 별 개인피폭선량에 관한 연구)

  • Kang, Chun-Goo;Oh, Ki-Baek;Park, Hoon-Hee;Oh, Shin-Hyun;Park, Min-Soo;Kim, Jung-Yul;Lee, Jin-Kyu;Na, Soo-Kyung;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2010
  • Purpose: With increasing medical use of radiation and radioactive isotopes, there is a need to better manage the risk of radiation exposure. This study aims to grasp and analyze the individual radiation exposure situations of radiation-related workers in a medical facility by specific job, in order to instill awareness of radiation danger and to assist in safety and radiation exposure management for such workers. Materials and Methods: 1 January 2007 to 31 December 2009 to work in medical institutions are classified as radiation workers Nuclear personal radiation dosimeter regularly, continuously administered survey of 40 workers in three years of occupation to target, Imaging Unit beautifully, age, dose sector, job function-related tasks to identify the average annual dose for a deep dose, respectively, were analyzed. The frequency analysis and ANOVA analysis was performed. Results: Imaging Unit beautifully three years the annual dose PET and PET/CT in the work room 11.06~12.62 mSv dose showed the highest, gamma camera injection room 11.72 mSv with a higher average annual dose of occupation by the clinical technicians 8.92 mSv the highest, radiological 7.50 mSv, a nurse 2.61 mSv, the researchers 0.69 mSv, received 0.48 mSv, 0.35 mSv doctors orderly, and detail work employed the average annual dose of the PET and PET/CT work is 12.09 mSv showed the highest radiation dose, gamma camera injection work the 11.72 mSv, gamma camera imaging work 4.92 mSv, treatment and safety management and 2.98 mSv, a nurse working 2.96 mSv, management of 1.72 mSv, work image analysis 0.92 mSv, reading task 0.54 mSv, with receiving 0.51 mSv, 0.29 mSv research work, respectively. Dose sector average annual dose of the study subjects, 15 people (37.5%) than the 1 mSv dose distribution and 5 people (12.5%) and 1.01~5.0 mSv with the dose distribution was less than, 5.01~10.0 mSv in the 14 people (35.0%), 10.01~20.0 mSv in the 6 people (15.0%) of the distribution were analyzed. The average annual dose according to age in occupations that radiological workers 25~34 years old have the highest average of 8.69 mSv dose showed the average annual dose of tenure of 5~9 years in jobs radiation workers in the 9.5 mSv The average was the highest dose. Conclusion: These results suggest that medical radiation workers working in Nuclear Medicine radiation safety management of the majority of the current were carried out in the effectiveness, depending on job characteristics has been found that many differences. However, this requires efforts to minimize radiation exposure, and systematic training for them and for reasonable radiation exposure management system is needed.

  • PDF

Development of a Real-Time Active Safety Management Platform and Data Collection Device for the Safety of Radiation Workers (방사선 작업종사자 안전을 위한 실시간 능동형 안전관리 플랫폼과 데이터 수집 디바이스 개발 연구)

  • Kilsoon Park;Kihun Bae;Yongkwon Kim;Won Ki Seo
    • Journal of Radiation Industry
    • /
    • v.18 no.3
    • /
    • pp.209-215
    • /
    • 2024
  • Radiation work always carries the risk of radiation exposure, so regulatory agencies manage it through licensing when high exposure is expected. However, due to passive management methods using TLD, etc., there are cases where risk management is done after an incident occurs or the incident is covered up. In this study, we developed a system to manage the location of radiation work and the risk of workers in real time through a safety management platform and a location-based personal dosimeter. The safety platform server receives data from the developed personal dosimeter in real time and manages risks in three steps for each worker using location and dose rate, and can predict risks and generate alarms in real time. The personal dosimeter transmits the location and dose rate of the worker in real time using GPS and LTE communication. The developed safety management platform and personal dosimeter were verified through a field test to receive real-time data of the location and dose rate data of the worker, and the risk management function according to the individual dose rate was verified.

Radiation Exposure Analysis of Female Nuclear Medicine Radiation Workers (여성 핵의학 방사선종사자의 피폭요인 분석)

  • Lee, Juyoung;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.209-225
    • /
    • 2016
  • In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus, those who have never been pregnant need to have a more active defensive conduct for the future possibility of pregnancy.