본 연구는 방사선을 이용한 검사 시 방사선 방어용 앞치마(apron)의 성능이 좋지 못할 경우 방사선 작업종사자의 피폭이 상대적으로 높아질 수밖에 없음에 따라 영상평가 프로그램인 Image J의 최대 신호 대 잡음비 값을 측정하여 융복합 방어 성능평가와, 우수한 성능의 apron을 구비 할 수 있는 기초자료를 도출하고, 선량계 없이도 성능 평가 방법의 접근을 용이하게 하여 주기적이고 철저한 apron관리의 용이성을 확보하고자 하였다. 각각 32벌의 apron 9군데의 최대 신호 대 잡음비 값을 비교한 결과 상태가 양호한 apron의 경우 27 dB이상으로 나타났고 상태가 불량한 apron의 경우 24 dB미만으로 측정되어 각각의 성능이 뚜렷하게 구별 되는 것이 확인되었다. 통계분석결과 정규성 분포를 보여 t-test를 실시한 결과 p<0.001로 두 결과 값은 통계적으로 유의하였다. 이에 따라 방사선 작업종사자의 방사선피폭을 최대한 줄이기 위해 선량계 없이 최대 신호 대 잡음비 값 측정만으로 apron의 성능 평가가 용이하여 방사선 작업종사자 및 환자의 불필요한 피폭 관리가 용이하게 되었다.
목 적: CBCT와 EXACTRAC을 이용한 Spine 체부정위적방사선 치료 Set up 시 이미지 보정 값과 실제 오차의 차이를 측정하고, 이 오차 값이 미치는 선량분포를 계산하여 CBCT와 EXACTRAC의 유용성을 평가하고자 한다. 대상 및 방법: Set up 오차 보정 값과 실제 오차 비교 실험을 위해서 QA용 Cubic phantom (The EASY CUBEr, Euromechanics, Schwarzenbruck, Germany)을 이용하였고, phantom의 중심축을 인위적으로 LR 방향으로 -1 mm, -2 mm, -3 mm SI 방향으로 1 mm, 2 mm, 3 mm 그리고 AP방향으로 1 mm, 2 mm, 3 mm 이동시켰으며, 중심축을 $0.5^{\circ}$씩 좌우로 회전시켜 CBCT와 EXACTRAC의 Auto matching 보정 값과 비교 측정하였으며, 이동된 오차 값을 가정하여 Rando Phantom을 이용한 Spine SBRT 플랜에 적용하여 재계산을 시행하였다. 결 과: Set up 보정 값과 실제 오차 비교실험에서 3D CBCT의 평균값은 LR, SI, AP 방향으로 0.15 mm 회전방향으로 $0.04^{\circ}$였고 EXACTRAC의 평균값은 LR, SI, AP 방향으로 0.18 mm 회전방향으로 $0.07^{\circ}$였다. 이동 값 오차를 가정한 선량 재계산 결과, SI방향 2, 3 mm 이동 시 $V_{10}$ (종양의 용적에 10 Gy가 들어가는 선량) Volume이 각각 10.574%, 10.712%가 나타났고 LR방향 -3 mm 이동 시 12.076%로 가장 높게 나타났다. 결 론: CBCT와 EXACTRAC의 Set up 보정 값과 실제 오차는 1 mm, $0.1^{\circ}$ 미만으로 두 시스템 모두 매우 정밀한 set up 오차보정을 보였다. 그러나 선량 재계산 시 3 mm 이상의 오차가 발생한 경우, Spine SBRT 치료 시 Spinal cord에 들어가는 선량이 $V_{10}$에서 3% 이상 최대선량 13 Gy 이상 증가함으로서 치명적인 흡수선량 오류가 발생할 수 있음을 확인하였다. 따라서 본 저자는 1회에 한한 Spine SBRT 치료 시 정확도 측면에서 종양의 단면 정보를 위치적으로 제공하는 CBCT가 더 유용할 것으로 사료된다.
방사선 치료의 궁극적인 목적은 정상 조직의 후유증을 최소화하면서 암종의 완전 국소 관해를 도모하는데 있다. 1970년대에 전산화 단층 촬영법이 대두된 후로 환자의 해부학적 정상 조직과 암종의 부위와 침윤 정도를 거의 정확하게 알게 되었고, 표적 암조직에 인체 외부에서 가해지는 방사선의 등선량 곡선을 각 단면에서 확인할 수 있었다. 특히 두경부 종양의 방사선 치료 계획에 있어서 재구성 영상으로 암종과 주위 정상 조직의 상관관계를 삼차원적으로 파악하고 영상 위에서 바로 등 선량 곡선을 볼 수 있으므로 암종에는 관해에 충분한 방사선을 투여하면서 정상 조직 (예, 척수 등)에 가해지는 방사선량을 명확히 알 수 있어 최소한의 선량으로 후유증을 방지할 수 있었다. 이는 축, 종, 횡, 단면의 재구성 영상을 얻어서 이루어질 수 있고 종래의 이차원적인 한 개의 단면에서만 시행하던 치료 계획을 서로 다른 세 개의 단면에서 삼차원적으로 시행함으로서 입체적으로 분포 선량을 추정할 수 있어 두경부 종양 환자의 치료에 더 유익하였다.
식도암은 병변의 길이가 길고 깊이의 불균질성으로 인하여 방사선의 균일한 선량분포를 얻기 어렵다. 이러한 문제점을 개선해 보고자 Half beam 법을 이용하여 선량분포의 균질성을 극복해 보고자 환자의 영상을 바탕으로 하여 Normal beam과 Half beam을 이용하여 각각 치료계획을 세워 표적체적포함율과 선량체적곡선, 일치성지수와 균질성지수를 상호 비교하고, 인접정상장기인 심장, 척수, 폐를 비교해 보고자 한다. 실험결과 Half beam을 이용한 치료계획이 표적체적포함율과 선량체적곡선 그리고 일치성지수와 균질성지수가 우수하였으며 정상조직 보호측면에서도 미미하지만 우수한 것으로 나타났다. 하지만 정확한 환자자세가 확보되지 않으면 부작용이 발생할 수 있다. 따라서, 기하학적으로 정확한 환자의 위치잡이를 수반한 Half beam의 적용은 선량적으로 유용할 수 있을 것으로 사료된다.
The aim of this study is to improve the accuracy of field placement and junction between adjacent fields and block shielding through the use of a computed tomography(CT) simulator and virtual simulation. The information was acquired by assessment of Alderson Rando phantom image using CT simulator (I.Q. Xtra - Picker), determination of each field by virtual fluoroscopy of voxel IQ workstation AcQsim and colored critical structures that were obtained by contouring in virtual simulation. And also using a coronal, sagittal and axial view can determine the field and adjacent field gap correctly without calculation during the procedure. With the treatment planning by using the Helax TMS 4.0, the dose in the junction among the adjacent fields and the spinal cord and cribriform plate of the critical structure was evaluated by the dose volume histogram. The pilot image of coronal and sagittal view took about 2minutes and 26minutes to get 100 images. Image translation to the virtual simulation workstation took about 6minutes. Contouring a critical structure such as cribriform plate, spinal cord using a virtual fluoroscopy were eligible to determine a correct field and shielding. The process took about 20 minutes. As the result of the Helax planning, the dose distribution in adjacent field junction was ideal, and the dose level shows almost 100 percentage in the dose volume histogram of the spinal cord and cribriform plate CT simulation can get a correct therapy area due to enhancement of critical structures such as spinal cord and cribriform plate. In addition, using a Spiral CT scanner can be saved a lot of time to plan a simulation therefore this function can reduce difficulties to keep the patient position without any movements to the patient, physician and radiotherapy technician.
고에너지(MV, Mega-voltage) X선 영상은 일반적인 방사선 치료 시 조사야의 영상 검증이 가능한 유일한 방법으로 널리 사용되고 있다. 그러나 고에너지 특유의 높은 콤프턴 산란 반응 특성으로 인해 저에너지 영상에 비해 화질이 크게 낮으며, 1990년대에 디지털 MV 영상이 소개된 이후 화질을 보완하기 위한 연구들이 활발히 이루어져 왔다. 본 연구에서는 디지털 영상처리 기법을 이용하거나 산란 커널 계산을 통해 화질을 개선하는 기존의 방법 대신 측정된 산란선 대 일차 선비(SPR, Scatter to Primary Ratio)를 이용하는 새로운 방법을 제안하였다. 먼저 주어진 촬영 조건 하에서 환자를 모사하는 고체 물팬톰의 유무에 따라 각각 MV영상을 촬영하고 방사선의 투과율을 별도로 계산한 후 산란 성분이 포함된 일차선 영상과 포함되지 않은 일차선 영상을 각각 획득하였다. 이를 기반으로 산란 보정에 사용할 SPR 분포를 획득하였다. 그리고 알루미늄 막대를 이용한 line pair (LP) 팬텀 및 실제 환자 골반의 영상을 이용하여 산란 보정 효과의 검증을 수행하였다. SPR 측정 결과 팬톰 두께에 따른 SPR 분포들을 성공적으로 획득하였으며, LP 팬텀 검증 결과 영상의 산란 성분이 효과적으로 제거되어 팬톰 본래의 밀도 분포가 복원되었음을 확인하였다. 또한 환자 골반 영상 보정 결과 모든 관심영역에서 대조도가 평균 48% 증가하였다. 본 연구에서 제시한 MV 영상의 산란 보정 방법은 실제 측정 자료를 기반으로 하므로 높은 신뢰성을 가지며, 적은 시간과 비용으로도 임상 현장에서 즉각적인 도입이 가능하다. 결론적으로 본 연구는 MV 영상을 이용한 영상유도 방사선치료의 질을 높이기 위한 하나의 효과적인 방법이 될 수 있을 것으로 기대된다.
Objective: To evaluate the effect of intravenous contrast on dose calculation in radiation treatment planning for oesophageal cancer. Methods: A total of 22 intravein-contrasted patients with oesophageal cancer were included. The Hounsfield unit (HU) value of the enhanced blood stream in thoracic great vessels and heart was overridden with 45 HU to simulate the non-contrast CT image, and 145 HU, 245 HU, 345 HU, and 445 HU to model the different contrast-enhanced scenarios. 1000 HU and -1000 HU were used to evaluate two non-physiologic extreme scenarios. Variation in dose distribution of the different scenarios was calculated to quantify the effect of contrast enhancement. Results: In the contrast-enhanced scenarios, the mean variation in dose for planning target volume (PTV) was less than 1.0%, and those for the total lung and spinal cord were less than 0.5%. When the HU value of the blood stream exceeded 245 the average variation exceeded 1.0% for the heart V40. In the non-physiologic extreme scenarios, the dose variation of PTV was less than 1.0%, while the dose calculations of the organs at risk were greater than 2.0%. Conclusions: The use of contrast agent does not significantly influence dose calculation of PTV, lung and spinal cord. However, it does have influence on dose accuracy for heart.
During hyperthermia therapy, cancer cells are heated to a temperature in the range of $40{\sim}45^{\circ}C$ for a defined time period to damage these cells while keeping healthy tissues at safe temperatures. Prior to hyperthermia therapy, the amount of heat energy transferred to the cancer cells must be predicted. Among various non-invasive methods, the thermal prediction method using the specific absorption rate (SAR) is the most widely used method. The existing methods predict the thermal distribution by using a single constant for the mass density in one organ through assignment. However, because the SAR and the bio heat equation (BHE) vary with the mass density, the mass density of each organ must be accurately considered. In this study, the mass density distribution was calculated using the relationship between the Hounsfield unit and the mass density of tissues in preceding research. The SAR distribution was found using a quasi-static approximation to Maxwell's equation and was used to calculate the potential distribution and the energy distributions for capacitive RF heating. The thermal distribution during exposure to RF waves was determined by solving the BHE with consideration given to the considering contributions of heat conduction and external heating. Compared with reference data for the mass density, our results was within 1%. When the reconstructed temperature distribution was compared to the measured temperature distribution, the difference was within 3%. In this study, the density distribution and the thermal distribution were reconstructed for the agar phantom. Based on these data, we developed an algorithm that could be applied to patients.
본 논문에서는 전류 라인 아래, 위에 놓은 유한 도전성 다층 영상 평면이 전자파 복사에 미치는 영향을 분석하였으며, 전류 라인과 영상 평면의 폭, 전류 라인과 평면의 거리 등의 함수로 영상 평면의 EMI 차폐성능을 계산하였다. 영상 평면에 유도된 전류분포는 모멘트 기법을 이용하여 전계 적분방정식을 풀어서 계산하였으며, 전류분포를 작은 매트릭스 크기로 효율적으로 구하기 위해 전류분포의 변화를 고려하여 적분구간을 분할하는 새로운 방법을 제안하고 그 결과를 다른 방법과 비교하였다.
목 적 : 폐암의 호흡동조방사선치료(Respiratory Gated Radiotherapy, RGRT)계획수립 후 표적 주변에 위치하고 있는 정상장기의 경우에는 움직임과 용적변화가 고려되지 않은 상태에서 선량평가가 이루어지는 경우가 많다. 본 연구에서는 적응형방사선치료(Adaptive Radiotherapy, ART)에서 많이 사용되는 변형영상정합(Deformable Image Registration, DIR)을 이용하여 호흡동조방사선치료 시 특정 위상에서의 정상장기의 움직임을 반영한 4차원-선량평가를 진행하였으며, 3차원 선량평가와의 차이를 연구하였다. 또한, 폐암의 치료계획평가 시 환자 호흡에 따른 정상장기의 움직임과 용적변화에 대한 분석 및 고려가 필요한 지 알아보고자 한다. 대상 및 방법 : 호흡동조방사선치료를 받은 폐암 환자 10명을 대상으로 하였다. Eclipse(Ver 13.6 Varian, USA)로 최고 위상 CT영상에 그려진 구조물을 모든 위상영상에 Propagation($Eclipse^{TM}$)이나 Segmentation Wizard($Eclipse^{TM}$)의 메뉴로 동일하게 설정하였으며, Center-to-Center 방식으로 구조물의 움직임 및 용적을 분석하였다. 또한, 4차원 선량평가를 위해 VELOCITY 프로그램(VELOCITY Ver 4.0, Varian, USA)을 이용하여 각 위상의 영상과 선량분포를 최고 위상 CT영상에 변형하였으며, 선량을 합산하여 정상장기의 4차원 선량평가를 실시하고, 3차원 선량평가와 비교분석을 하였다. 또한, 4차원 선량분포의 검증을 위해 $QUASAR^{TM}$ Phantom(Modus Medical Devices)과 $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA)을 사용하여 4차원 감마분석을 시행하였다. 결 과 : 들숨과 날숨 구간의 움직임은 우측 폐가 축 방향 $0.989{\pm}0.34cm$로 가장 컸으며, 척수가 측 방향 -0.001 cm로 가장 작았다. 30~70 % 구간의 움직임은 식도가 축 방향 $0.52{\pm}0.21cm$로 가장 컸으며, 척수가 전후방향 $0.013{\pm}0.01cm$로 가장 작았다. 용적은 우측 폐가 33.5 %로 가장 큰 변화율을 보였다. 3차원 선량평가와 4차원 선량평가에서의 PTV 선량균질지수(Conformity Index, CI) 값과 처방선량지수(Homogeneity Index, HI) 값의 차이는 각각 최대 0.076, 0.021, 최소 0.011, 0.0으로 평가되었다. 정상장기의 경우 4차원 선량평가에서 0.0045~2.76 % 차이를 보였다. 모든 환자의 4차원 감마통과율은 평균 $98.1{\pm}0.42%$로 확인되었고, 모두 기준 95 %를 통과하였다. 결 론 : 모든 환자의 PTV 선량균질지수 값은 4차원 선량평가 시 더 유의한 값임을 확인할 수 있었으며, 처방 선량지수는 두 선량평가에서 차이를 보이지 않았다. 호흡에 의한 움직임이 고려된 4차원 선량분포에서 PTV 경계부분이 채워져 3차원 선량분포에서보다 선량이 더욱 균질한 것을 확인할 수 있었다. 정상장기의 4차원 선량평가에서 0.004~2.76 % 차이가 있었으며, 척수를 제외한 모든 정상장기에서 두 평가방법의 차이유의를 확인할 수 있었다. 정상장기의 3차원 선량평가 시 과소평가가 이루어 질 수 있다는 사실을 본 연구를 통해 알 수 있었으며, 호흡에 의한 정상장기의 선량변화가 예상되는 경우 변형영상정합을 이용한 4차원 선량평가를 고려할 수 있을 것이다. 변형영상정합을 이용한 4차원 선량평가는 환자의 호흡에 의한 정상장기의 움직임과 용적 변화를 반영하는 조금 더 현실적인 선량평가방법이 될 것이라고 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.